Pregunta
upstudy study bank question image url

\( y=\frac{2}{3} x^{2}-8 x+7 \) 17. Will the parabola open up or down? open up 18. Is the vertex a minimum or maximum? Min. 19. Find the vertex. 20. Find the Axis of Symmetry.

Ask by Valdez Marsh. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

17. The parabola opens up. 18. The vertex is a minimum. 19. The vertex is at (6, –17). 20. The axis of symmetry is x = 6.

Solución

17. The parabola opens up (because the coefficient of x², which is 2/3, is positive). 18. The vertex is a minimum (since the parabola opens upward). 19. To find the vertex, use x = –b/(2a):   a = 2/3, b = –8.   x = –(–8)/(2·(2/3)) = 8/(4/3) = 8·(3/4) = 6.   Now, substitute x = 6 into the equation:    y = (2/3)(6)² – 8·6 + 7    y = (2/3)*36 – 48 + 7 = 24 – 48 + 7 = –17.   So, the vertex is (6, –17). 20. The axis of symmetry is the vertical line passing through the vertex, x = 6.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The parabola will open up because the coefficient of \( x^{2} \) in the equation \( y = \frac{2}{3} x^{2} - 8x + 7 \) is positive. This means that as you move away from the vertex in both directions, the value of \( y \) will increase. The vertex can be found using the formula \( x = -\frac{b}{2a} \). Here, \( a = \frac{2}{3} \) and \( b = -8 \). Plugging in the values, \( x = -\frac{-8}{2 \cdot \frac{2}{3}} = 6 \). To find the corresponding \( y \)-value, substitute \( x = 6 \) back into the equation: \( y = \frac{2}{3}(6^{2}) - 8(6) + 7 = -1 \). Therefore, the vertex is at (6, -1). The axis of symmetry for a parabola given by the standard form \( y = ax^{2} + bx + c \) is the vertical line that passes through the vertex. Since we found that the vertex occurs at \( x = 6 \), the axis of symmetry is the line \( x = 6 \). This means if you were to fold the parabola along this line, both halves would match perfectly, just like a well-folded piece of paper!

Latest Algebra Questions

phrase I. The difference between three times \( x \) and fifteen is greater than or equal to five 2. Five more than sixteen times \( x \) is less than or equal to six 3. Three more than two times \( x \) is less than seven \( \square \) 4. Five less than four times \( x \) is less than or equal to sixteen 5. Six times the sum of \( x \) and twelve is less than fourteen 6. The difference between fifteen and two times \( x \) is greater than five 7. The difference between eleven and four times \( x \) is greater than or equal to three 8. The sum of negative three times \( x \) and five is less than or equal to negative four 9. Fourteen less than five times \( x \) is at most eleven \( \qquad \) 10. Twice the sum of nine and \( x \) is greater than twenty II. Ten less than three times \( x \) is greater than eleven 12. Thirteen plus five times \( x \) is no more than thirty 13. Thirteen more than three times \( x \) is no more than the opposite of eleven 14. Half of the sum of \( x \) and six is no less than twenty 15. The difference between negative five times \( x \) and eight is greater than twelve. Solve only your inequalities! Look for your answer at the bottom. \[ \begin{array}{ll} N \quad 2 x+3 \leq 7 & E \\ C & 14-5 x \leq 11 \\ \text { C } 15-2 x>5 & \text { R } \\ F(9+x)>20 \\ E \quad 1 / 2 x+6 x \leq 30 & \text { D } \end{array} 6(x+12)<141 \] \[ \text { L } 5 x-14 \leq 11 \quad H \quad-3 x-5<-4 \] \[ \text { U } 3 x-15 \geq 5 \quad \text { A } 1 / 2(x+6) \geq 20 \] \[ E \quad 6(x-12)>14 \backslash \text { H } \quad 11-4 x \geq 3 \] \[ 3 x-10>11 \quad 0 \quad-5 x-8>12 \] \[ \vee 16 x+5<6 \quad \& \quad 3 x+13 \leq-11 \] \[ \text { Y } 4 x-5 \geq 16 \quad \text { \& } 16 x+5 \leq 6 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad