problem is: Use continuity to evaluate the limit. \( \lim _{x \rightarrow 2} \arctan \left(\frac{x^{2}-4}{5 x^{2}-10 x}\right) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To evaluate the limit, we can start by simplifying the expression inside the arctan function. Notice that when \( x = 2 \), both the numerator and the denominator of the fraction become zero. We can factor the fraction: \[ \frac{x^{2} - 4}{5x^{2} - 10x} = \frac{(x - 2)(x + 2)}{5x(x - 2)} \] Now, we can cancel the \( (x - 2) \) term (as long as \( x \neq 2 \)): \[ \frac{x + 2}{5x} \] Next, we can evaluate the limit as \( x \) approaches 2: \[ \lim_{x \rightarrow 2} \arctan \left(\frac{x + 2}{5x}\right) = \arctan\left(\frac{2 + 2}{5 \cdot 2}\right) = \arctan\left(\frac{4}{10}\right) = \arctan\left(\frac{2}{5}\right) \] So, finally, the limit evaluates to: \[ \lim_{x \rightarrow 2} \arctan \left(\frac{x^{2}-4}{5 x^{2}-10 x}\right) = \arctan\left(\frac{2}{5}\right) \]
