Decide whether the given relation defines \( y \) as a function of \( x \). Give the domain and range. \( y=\sqrt{4 x+1} \) Does the relation define a function? Yes No
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Yes, the relation \( y = \sqrt{4x + 1} \) does define \( y \) as a function of \( x \). This is because for each value of \( x \) in its domain, there is exactly one corresponding value of \( y \). To find the domain, we need to ensure that the expression under the square root is non-negative: \[ 4x + 1 \geq 0 \implies x \geq -\frac{1}{4} \] Thus, the domain is \( [-\frac{1}{4}, \infty) \). For the range, since the square root function produces non-negative outputs, the smallest value of \( y \) occurs when \( x = -\frac{1}{4} \), giving \( y = 0 \). Therefore, the range is \( [0, \infty) \).
