Pregunta
upstudy study bank question image url

Consider the line \( y=\frac{3}{7} x+6 \). Find the equation of the line that is parallel to this line and passes through the point \( (-9,-5) \). Find the equation of the line that is perpendicular to this line and passes through the point \( (-9,-5) \). Note that the ALEKS graphing calculator may be helpful in checking your answer. Equation of parallel line:

Ask by Gibson Estrada. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the parallel line is \( y = \frac{3}{7}x - \frac{8}{7} \).

Solución

For the parallel line, the slope must be the same as the given line. Since the line y = (3/7)x + 6 has a slope of 3/7, the parallel line will also have slope 3/7. Using the point (-9, -5) and the slope-point form:   y - y₁ = m(x - x₁) Substitute m = 3/7, x₁ = -9, and y₁ = -5:   y - (-5) = (3/7)(x - (-9))   y + 5 = (3/7)(x + 9) Now, solve for y:   y = (3/7)(x + 9) - 5 Distribute the slope:   y = (3/7)x + (27/7) - 5 Convert 5 to sevenths (5 = 35/7) and simplify:   y = (3/7)x + (27/7 - 35/7)   y = (3/7)x - (8/7) Thus, the equation of the line parallel to the given line and passing through (-9, -5) is: y = (3/7)x - (8/7)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The slope of the line \( y=\frac{3}{7} x+6 \) is \( \frac{3}{7} \). A parallel line will have the same slope. To find the equation of the parallel line that passes through the point \( (-9,-5) \), we can use the point-slope form: \[ y - y_1 = m(x - x_1) \] Substituting \( m = \frac{3}{7} \), \( x_1 = -9 \), and \( y_1 = -5 \): \[ y - (-5) = \frac{3}{7}(x - (-9)) \] Simplifying, \[ y + 5 = \frac{3}{7}(x + 9) \] This gives: \[ y = \frac{3}{7} x + \frac{27}{7} - 5 \] Now converting -5 to have a common denominator: \[ -5 = -\frac{35}{7} \] Thus, \[ y = \frac{3}{7} x + \frac{27}{7} - \frac{35}{7} = \frac{3}{7} x - \frac{8}{7} \] So, the equation of the parallel line is: \[ y = \frac{3}{7} x - \frac{8}{7} \] Now, for the equation of the line that is perpendicular to \( y=\frac{3}{7} x+6 \), we first determine the negative reciprocal of the slope \( \frac{3}{7} \), which is \( -\frac{7}{3} \). Using the point-slope form again for the point \( (-9,-5) \): \[ y - (-5) = -\frac{7}{3}(x - (-9)) \] This simplifies to: \[ y + 5 = -\frac{7}{3}(x + 9) \] Multiplying through by 3 to eliminate the fraction gives: \[ 3(y + 5) = -7(x + 9) \] Distributing: \[ 3y + 15 = -7x - 63 \] Now isolating \( y \): \[ 3y = -7x - 63 - 15 \] \[ 3y = -7x - 78 \] \[ y = -\frac{7}{3} x - 26 \] Thus, the equation of the perpendicular line is: \[ y = -\frac{7}{3} x - 26 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad