Pregunta
upstudy study bank question image url

\( \begin{array}{l}\text { What is the slope of the line that passes through the points }(4,3) \text { and } \\ (1,-5) \text { ? }\end{array} \) \( \begin{array}{l}8 / 3 \\ 3 / 8 \\ -8 / 3 \\ -3 / 8\end{array} \) Previous

Ask by Mullins Boone. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The slope of the line is \( \frac{8}{3} \).

Solución

To find the slope of the line that passes through the points \((4, 3)\) and \((1, -5)\), we can use the slope formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] where \((x_1, y_1)\) and \((x_2, y_2)\) are the coordinates of the two points. 1. Identify the coordinates: - \((x_1, y_1) = (4, 3)\) - \((x_2, y_2) = (1, -5)\) 2. Substitute the values into the slope formula: \[ m = \frac{-5 - 3}{1 - 4} \] 3. Calculate the numerator and denominator: - Numerator: \(-5 - 3 = -8\) - Denominator: \(1 - 4 = -3\) 4. Substitute these values back into the formula: \[ m = \frac{-8}{-3} \] 5. Simplify the fraction: \[ m = \frac{8}{3} \] Thus, the slope of the line that passes through the points \((4, 3)\) and \((1, -5)\) is \(\frac{8}{3}\). The correct answer is \( \frac{8}{3} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the slope of the line passing through the points \((4, 3)\) and \((1, -5)\), you can use the formula for slope \(m = \frac{y_2 - y_1}{x_2 - x_1}\). Plugging in the coordinates: \(y_2 = -5\), \(y_1 = 3\), \(x_2 = 1\), and \(x_1 = 4\), you get \(m = \frac{-5 - 3}{1 - 4} = \frac{-8}{-3} = \frac{8}{3}\). So, the slope is \(\frac{8}{3}\)! Now, let’s talk about how the slope can be interpreted. The slope indicates how steep a line is and the direction in which it goes—whether it rises or falls as you move from left to right. A positive slope, like \(\frac{8}{3}\), means that as you move along the x-axis from left to right, the y-values are increasing. Picture it as climbing up a hill! For more practice, think of real-world scenarios where slope is crucial. For instance, engineers use slope when designing roads to ensure vehicles can travel safely. A gentle slope is easier for cars to handle, while a steep one might require special features like switchbacks. Have fun exploring slopes in your environment!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad