\( x = \frac { - 3 \pm \sqrt { 13 - 2 k } } { 4 } \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let’s dive into the fascinating journey of the quadratic formula! This expression reveals possible solutions for \(x\) based on the values of \(k\). The term \(\sqrt{13 - 2k}\) shows that \(k\) can adjust the number of solutions. For instance, if \(k\) is such that \(13 - 2k\) is positive, you’ll find two distinct solutions. If it equals zero, there's exactly one solution, and if it’s negative, well, it’s imaginary time! Now, when tackling problems like this, one common pitfall is forgetting the domain restrictions due to the square root! It’s essential that \(13 - 2k \geq 0\) to ensure real values for \(x\). So, keep an eye on those values of \(k\)! Solve \(13 - 2k \geq 0\) to find the intervals where real solutions exist for \(x\).
