Pregunta
upstudy study bank question image url

The mean serum cholesterol of a large population of overweight adults is \( 210 \mathrm{mg} / \mathrm{dl} \) and the standard deviation of \( 19 \mathrm{mg} / \mathrm{dl} \). If the sample of 40 adults is selected, find the probability that the mean will be greater than \( 210 \mathrm{mg} / \mathrm{dl} \).

Ask by Park Chan. in the Philippines
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that the sample mean is greater than 210 mg/dl is 50%.

Solución

Since the population mean is 210 mg/dl and the sample mean is based on a sample of equal distribution, by symmetry the probability that the sample mean is greater than 210 mg/dl is 0.5. To explain further: 1. The distribution of the sample mean (x̄) will be normally distributed with mean μ = 210 mg/dl. 2. The standard error (σₓ̄) is given by the population standard deviation divided by the square root of the sample size:   σₓ̄ = 19 / √40. 3. The z-score for the sample mean being 210 mg/dl is:   z = (210 - 210) / (19 / √40) = 0. 4. The probability of z being greater than 0 in a standard normal distribution is exactly 0.5. Therefore, the probability that the sample of 40 adults will have a mean serum cholesterol greater than 210 mg/dl is 50%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that the sample mean of cholesterol will be greater than \( 210 \mathrm{mg}/\mathrm{dl} \), we can use the Central Limit Theorem. For a sample size of \( n = 40 \), the standard error (SE) is calculated as: \[ SE = \frac{\sigma}{\sqrt{n}} = \frac{19}{\sqrt{40}} ≈ 3.0 \mathrm{mg}/\mathrm{dl}. \] Since the sample mean's distribution is normal (thanks to the Central Limit Theorem), we can standardize the sample mean of \( 210 \mathrm{mg}/\mathrm{dl} \) to find our z-score: \[ z = \frac{\bar{x} - \mu}{SE} = \frac{210 - 210}{3.0} = 0. \] Now, we look up the z-score of \( 0 \) in the standard normal distribution, which gives us a probability of \( 0.5 \). This means there is a \( 50\% \) chance that the mean of a sample of \( 40 \) adults will be greater than \( 210 \mathrm{mg}/\mathrm{dl} \).

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad