Pregunta
upstudy study bank question image url

Factor. Check by multiplying. \( 4 x^{9} y^{7}+12 x^{7} y^{6}+32 x y \)

Ask by Adkins Hobbs. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The factored form is \( 4xy(x^8y^6 + 3x^6y^5 + 8) \).

Solución

Step 1. Begin with the expression:   4x⁹y⁷ + 12x⁷y⁶ + 32xy Step 2. Identify the greatest common factor (GCF) for all the terms. • For the numerical coefficients: The GCF of 4, 12, and 32 is 4. • For x: The smallest power of x appears in the term 32xy, which has x¹. • For y: The smallest power of y appears in the term 32xy, which has y¹. Thus, the GCF is 4xy. Step 3. Factor the GCF out of the expression:   4xy( ? + ? + ? ) Divide each term by 4xy: • 4x⁹y⁷ ÷ 4xy = x⁸y⁶ • 12x⁷y⁶ ÷ 4xy = 3x⁶y⁵ • 32xy ÷ 4xy = 8 So the factored form is:   4xy(x⁸y⁶ + 3x⁶y⁵ + 8) Step 4. Check your work by expanding the factors: Multiply 4xy by each term in the parentheses: • 4xy · x⁸y⁶ = 4x⁹y⁷ • 4xy · 3x⁶y⁵ = 12x⁷y⁶ • 4xy · 8 = 32xy Since these products reproduce the original expression, the factorization is correct. Final Answer:   4xy(x⁸y⁶ + 3x⁶y⁵ + 8)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To factor \( 4 x^{9} y^{7}+12 x^{7} y^{6}+32 x y \), we start by identifying the greatest common factor (GCF) in all the terms. The GCF here is \( 4xy \). Factoring that out gives us: \[ 4xy (x^{8}y^{6} + 3x^{6}y^{5} + 8) \] Now, let's check by multiplying back: 1. Distributing \( 4xy \) to each term results in: - \( 4xy \cdot x^{8}y^{6} = 4x^{9}y^{7} \) - \( 4xy \cdot 3x^{6}y^{5} = 12x^{7}y^{6} \) - \( 4xy \cdot 8 = 32xy \) So, the original expression is confirmed as \( 4xy (x^{8}y^{6} + 3x^{6}y^{5} + 8) \). To add a sprinkle of historical background, did you know that factoring polynomials dates back all the way to ancient civilizations? The Babylonians used methods to solve quadratic equations, and the Greeks looked into geometric representations of polynomials. It’s amazing how these ancient techniques laid the foundation for modern algebra! For some real-world applications, factoring is immensely useful in optimization problems. Engineers often need to break down complex equations to find maximum efficiencies or minimum costs in designs - think bridge construction or resource allocation! Understanding how to factor polynomials helps simplify these analyses and make solutions more accessible.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad