Pregunta
upstudy study bank question image url

A box contains 7 letters, shown as CHARTED. What is the probability of the outcome RAT in that order if 3 letters are drawn one by one (a) with replacement? (b) without replacement? The probability of the outcome RAT in that order if 3 letters are drawn with replacement is \( \frac{1}{343} \). (Type your answer as a fraction.) The probability of the outcome RAT in that order if 3 letters are drawn without replacement is (Type your answer as a fraction.)

Ask by Reyes Ortiz. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of drawing RAT in that order without replacement is \( \frac{1}{210} \).

Solución

Since the letters in CHARTED are all distinct, we have 7 letters. (a) With replacement, each draw is independent. The probability of drawing each letter (R, then A, then T) is 1/7, so the probability for RAT in that order is   (1/7) × (1/7) × (1/7) = 1/343. (b) Without replacement, the probability changes because each draw affects the next. For the first draw, the probability of drawing R is 1/7. After R is removed, there are 6 letters left, and the probability of drawing A is 1/6. After drawing A, 5 letters remain, and the probability of drawing T is 1/5. Therefore, the probability is   (1/7) × (1/6) × (1/5) = 1/210. So, the probability of getting RAT in that order when drawing without replacement is 1/210.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When drawing letters without replacement, once you pick a letter, it’s no longer available for the following draws. For the outcome "RAT" in that exact order from the box CHARTED: 1. The probability of drawing 'R' first is \( \frac{1}{7} \) since there are 7 letters. 2. After drawing 'R', there are now 6 letters remaining. The probability of drawing 'A' next is \( \frac{1}{6} \). 3. After 'A' is drawn, there are 5 letters left. The probability of drawing 'T' last is \( \frac{1}{5} \). Multiplying these probabilities together gives: \[ P(RAT) = \frac{1}{7} \times \frac{1}{6} \times \frac{1}{5} = \frac{1}{210} \] So, the probability of drawing RAT in that order without replacement is \( \frac{1}{210} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad