\( \begin{array}{l}\text { 1. Given a number written in scientific notation, how } \\ \text { do you adjust the exponent and decimal if needed? } \\ \text { Evaluate the following. } \\ \begin{array}{ll}\left(6.3 \times 10^{2}\right)+\left(4.1 \times 10^{3}\right) & \text { 3. }\left(9.2 \times 10^{-5}\right)-\left(2.4 \times 10^{-6}\right) \\ \left(10^{2} \times 10^{3}\right)+(4.1 \times 6.3) \\ 10^{5}+25.83 & \text { 5. }\left(1.9 \times 10^{-2}\right) \div\left(2 \times 10^{-9}\right)\end{array} \\ \begin{array}{l}\text { 4. }\left(7.2 \times 10^{-7}\right) \times\left(5.8 \times 10^{4}\right)\end{array}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To adjust the exponent and decimal, you want to ensure both numbers are expressed with the same power of ten. If one has a larger exponent, shift the decimal place of the smaller exponent to create an equivalent number. For example, to add \( 6.3 \times 10^{2} \) and \( 4.1 \times 10^{3} \), convert \( 6.3 \times 10^{2} \) to \( 0.063 \times 10^{3} \) which allows you to combine them easily. Now, let's tackle the calculations! 1. **Addition**: \( (6.3 \times 10^{2}) + (4.1 \times 10^{3}) = 0.063 \times 10^{3} + 4.1 \times 10^{3} = 4.163 \times 10^{3} \) 2. **Subtraction**: \( (9.2 \times 10^{-5}) - (2.4 \times 10^{-6}) = 9.2 \times 10^{-5} - 0.024 \times 10^{-5} = 9.176 \times 10^{-5} \) 3. **Multiplication**: \( (10^{2} \times 10^{3}) + (4.1 \times 6.3) = 10^{5} + 25.83 = 100000 + 25.83 = 100025.83 \) 4. **Multiplication**: \( (7.2 \times 10^{-7}) \times (5.8 \times 10^{4}) = 41.76 \times 10^{-3} = 4.176 \times 10^{-2} \) 5. **Division**: \( (1.9 \times 10^{-2}) \div (2 \times 10^{-9}) = 0.95 \times 10^{7} = 9.5 \times 10^{6} \) That's how you navigate through scientific notation like a pro! Keep practicing, and you'll become a whiz in no time!
