Pregunta
upstudy study bank question image url

The physical plant at the main campus of a large state university recieves daily requests to replace florecent lightbulbs. The distribution of the number of daily requests is bell-shaped and has a mean of 51 and a standard deviation of 10 . Using the \( 68-95-99.7 \) rule, what is the approximate percentage of lightbulb replacement requests numbering between 31 and 51 ? Do not enter the percent symbol. ans =

Ask by Pritchard Osborne. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

47.5

Solución

Since the requests follow an approximately normal (bell‐shaped) distribution with a mean of 51 and a standard deviation of 10, we can use the 68-95-99.7 rule. Step 1. Determine how many standard deviations away 31 is from the mean:   51 − 31 = 20, and 20/10 = 2 standard deviations. This tells us that 31 is 2 standard deviations below the mean. Step 2. According to the 68-95-99.7 rule, about 95% of the values lie within 2 standard deviations of the mean. That is, approximately 95% of the data falls between 51 − 2(10) = 31 and 51 + 2(10) = 71. Step 3. Because the normal distribution is symmetric, half of the values within the 95% interval lie between the mean and 31:   (95%)/2 = 47.5% Thus, the approximate percentage of lightbulb replacement requests numbering between 31 and 51 is 47.5. Final answer: 47.5

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the approximate percentage of lightbulb replacement requests between 31 and 51 using the \( 68-95-99.7 \) rule, we first determine how many standard deviations away from the mean these numbers are. The mean is 51, and the standard deviation is 10. For 31, the calculation is: \( 31 - 51 = -20 \) \( -20 / 10 = -2 \) (this is 2 standard deviations below the mean) Now, for 51, it’s the mean itself: \( 51 - 51 = 0 \) \( 0 / 10 = 0 \) (this is the mean) According to the \( 68-95-99.7 \) rule: - About 68% of the data falls within 1 standard deviation from the mean (between 41 and 61). - About 95% falls within 2 standard deviations (between 31 and 71). Since we need the percentage between 31 and 51, we take half of the 95% (since 31 to the mean is half the range of 31 to 71): - Therefore, it's approximately \( 95% / 2 = 47.5% \). However, since this accounts for the left side up to the mean, we summarize: It’s \( 47.5% \) of the area from 31 to 51. So, the answer is: 47.5

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad