Pregunta
upstudy study bank question image url

\begin{tabular}{l} hilliard.instructure.com \( \mathrm{Q}- \) Private \\ \hline Question 9 \\ Solve for all solutions of x : \\ \( x^{2}+2 x=-2 \) \\ Ox=\{1\} \\ \hline\end{tabular}

Ask by Knight Murray. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( x = -1 + i \) and \( x = -1 - i \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To solve the equation \( x^{2} + 2x + 2 = 0 \), we first rearrange it to standard quadratic form. Then, we can use the quadratic formula, \( x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \), where \( a = 1, b = 2, c = 2 \). Plugging in these values gives us \( x = \frac{-2 \pm \sqrt{(2)^{2} - 4(1)(2)}}{2(1)} = \frac{-2 \pm \sqrt{4 - 8}}{2} = \frac{-2 \pm \sqrt{-4}}{2} \). This results in complex solutions \( x = -1 \pm i \). Another interesting aspect of quadratic equations is that they can always provide a minimum or maximum value depending on the direction of the parabola. When you analyze the vertex of the quadratic, you can easily determine the range of the solutions. For this equation, as it's opening upwards (since \( a > 0 \)), the minimum point (the vertex) is at \( x = -1 \), meaning the function will have a minimum value, but all the solutions lie above that due to the complex roots.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad