Pregunta
upstudy study bank question image url

Find all the real zeros of the polynomial. Use the quadratic formula if necessary. (Enter your answers as a comma-separated list. Enter all answers induding repetitions.) \[ P(x)=3 x^{3}+18 x^{2}+21 x-6 \] \( x= \) Need Help? Readit Watch :

Ask by Marsh Munoz. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The real zeros of the polynomial are \( x = -2 - \sqrt{5}, x = -2, x = -2 + \sqrt{5} \).

Solución

Solve the equation \( 3x^{3}+18x^{2}+21x-6=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3x^{3}+18x^{2}+21x-6=0\) - step1: Factor the expression: \(3\left(x+2\right)\left(x^{2}+4x-1\right)=0\) - step2: Divide both sides: \(\left(x+2\right)\left(x^{2}+4x-1\right)=0\) - step3: Separate into possible cases: \(\begin{align}&x+2=0\\&x^{2}+4x-1=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=-2\\&x=-2+\sqrt{5}\\&x=-2-\sqrt{5}\end{align}\) - step5: Rewrite: \(x_{1}=-2-\sqrt{5},x_{2}=-2,x_{3}=-2+\sqrt{5}\) The real zeros of the polynomial \( P(x) = 3x^{3} + 18x^{2} + 21x - 6 \) are \( x = -2 - \sqrt{5}, x = -2, x = -2 + \sqrt{5} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the real zeros of the polynomial \( P(x) = 3x^3 + 18x^2 + 21x - 6 \), we can first look for rational roots using the Rational Root Theorem. Testing values, we find that \( x = -1 \) is a root. We can then divide the polynomial by \( (x + 1) \) to find the quadratic factor: Performing synthetic division, we get \( P(x) = (x + 1)(3x^2 + 15x - 6) \). Now, we can apply the quadratic formula to \( 3x^2 + 15x - 6 = 0 \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-15 \pm \sqrt{15^2 - 4(3)(-6)}}{2(3)} = \frac{-15 \pm \sqrt{225 + 72}}{6} = \frac{-15 \pm \sqrt{297}}{6} \] Thus, the real zeros of the polynomial are: \[ x = -1, \frac{-15 + \sqrt{297}}{6}, \frac{-15 - \sqrt{297}}{6} \] Final answer: \( x = -1, \frac{-15 + \sqrt{297}}{6}, \frac{-15 - \sqrt{297}}{6} \) Real-life problem solvers often steer towards polynomial equations like this one when grappling with real-life occurrences, such as calculating dimensions in architecture that follow cubic relationships. Understanding how to efficiently strategize for roots can lead to more optimal solutions in critical scenarios. Additionally, it’s common to misjudge the polynomial's degree or overlook synthetic division; always ensure each term’s degree aligns when simplifying. Keeping your calculations clean and checking each step can save you from multiplying errors or missing potential roots!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad