Pregunta
upstudy study bank question image url

The width of a rectangle is 9 less than twice its length. If the area of the rectangle is \( 174 \mathrm{~cm}^{2} \), what is the length of the diagonal? The length of the diagonal is Give your answer to 2 decimal places.

Ask by Stewart Simpson. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the diagonal is approximately 18.88 cm.

Solución

Let the length be L (in cm) and the width be W (in cm). We are told that the width is 9 less than twice the length, so   W = 2L – 9. The area of the rectangle is given as 174 cm², so   L · W = 174. Substitute W = 2L – 9 into the area equation:   L(2L – 9) = 174   2L² – 9L – 174 = 0. This quadratic equation can be solved using the quadratic formula:   L = [9 ± √(9² – 4·2·(–174))] / (2·2)   = [9 ± √(81 + 1392)] / 4   = [9 ± √1473] / 4. Since L must be positive, take the positive root:   L = (9 + √1473) / 4. Using a calculator, √1473 ≈ 38.396. Thus,   L ≈ (9 + 38.396) / 4 ≈ 47.396 / 4 ≈ 11.85 cm. Now, find the width:   W = 2L – 9 ≈ 2(11.85) – 9 ≈ 23.70 – 9 ≈ 14.70 cm. To find the length of the diagonal (d), use the Pythagorean theorem:   d = √(L² + W²)   ≈ √(11.85² + 14.70²)   ≈ √(140.42 + 216.09)   ≈ √356.51   ≈ 18.88 cm. Thus, the length of the diagonal is approximately 18.88 cm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's start by defining the length of the rectangle as \( l \). According to the problem, the width \( w \) can be expressed as \( w = 2l - 9 \). The area of the rectangle is given by the equation: \[ \text{Area} = l \times w = 174 \text{ cm}^2. \] Substituting the width into the area equation gives us: \[ l(2l - 9) = 174. \] This simplifies to: \[ 2l^2 - 9l - 174 = 0. \] Now, we can use the quadratic formula \( l = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 2 \), \( b = -9 \), and \( c = -174 \): \[ l = \frac{-(-9) \pm \sqrt{(-9)^2 - 4(2)(-174)}}{2(2)} = \frac{9 \pm \sqrt{81 + 1392}}{4} = \frac{9 \pm \sqrt{1473}}{4}. \] Calculating \( \sqrt{1473} \) gives approximately \( 38.39 \). So: \[ l = \frac{9 \pm 38.39}{4}. \] Choosing the positive root for length: \[ l = \frac{47.39}{4} \approx 11.85 \text{ cm}. \] Now calculating \( w \): \[ w = 2(11.85) - 9 \approx 14.7 - 9 = 5.7 \text{ cm}. \] To find the diagonal \( d \) of the rectangle, we use the Pythagorean theorem: \[ d = \sqrt{l^2 + w^2} = \sqrt{(11.85)^2 + (5.7)^2} \approx \sqrt{140.6225 + 32.49} \approx \sqrt{173.1125} \approx 13.15 \text{ cm}. \] Thus, the length of the diagonal is approximately \( \boxed{13.15} \) cm.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad