Responder
\( r^{200} \approx 1.221281 \) and \( S_{200} \approx 221.280705 \).
Solución
To solve the problem, we need to calculate \( r^{200} \) and \( S_{200} \) given that \( r = 1.001 \) and \( r > 1 \).
### Step 1: Calculate \( r^{200} \)
We can calculate \( r^{200} \) using the formula:
\[
r^{200} = (1.001)^{200}
\]
### Step 2: Calculate \( S_{200} \)
Assuming \( S_{200} \) refers to the sum of a geometric series, we can use the formula for the sum of the first \( n \) terms of a geometric series:
\[
S_n = a \frac{r^n - 1}{r - 1}
\]
where:
- \( a \) is the first term of the series,
- \( r \) is the common ratio,
- \( n \) is the number of terms.
For this case, we will assume \( a = 1 \) (the first term) and \( n = 200 \).
Thus, the formula becomes:
\[
S_{200} = \frac{(1.001)^{200} - 1}{1.001 - 1}
\]
Now, let's calculate both \( r^{200} \) and \( S_{200} \).
I'll perform these calculations now.
Calculate the value by following steps:
- step0: Calculate:
\(1.001^{200}\)
- step1: Convert the expressions:
\(\left(\frac{1001}{1000}\right)^{200}\)
- step2: Use the properties of exponents:
\(\frac{1001^{200}}{1000^{200}}\)
Calculate or simplify the expression \( ((1.001)^200 - 1) / (1.001 - 1) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(1.001^{200}-1\right)}{\left(1.001-1\right)}\)
- step1: Remove the parentheses:
\(\frac{1.001^{200}-1}{1.001-1}\)
- step2: Convert the expressions:
\(\frac{\left(\frac{1001}{1000}\right)^{200}-1}{1.001-1}\)
- step3: Subtract the numbers:
\(\frac{\frac{1001^{200}-1000^{200}}{1000^{200}}}{1.001-1}\)
- step4: Subtract the numbers:
\(\frac{\frac{1001^{200}-1000^{200}}{1000^{200}}}{0.001}\)
- step5: Convert the expressions:
\(\frac{\frac{1001^{200}-1000^{200}}{1000^{200}}}{\frac{1}{1000}}\)
- step6: Multiply by the reciprocal:
\(\frac{1001^{200}-1000^{200}}{1000^{200}}\times 1000\)
- step7: Reduce the numbers:
\(\frac{1001^{200}-1000^{200}}{1000^{199}}\times 1\)
- step8: Multiply:
\(\frac{1001^{200}-1000^{200}}{1000^{199}}\)
### Results
1. **Calculation of \( r^{200} \)**:
\[
r^{200} = (1.001)^{200} \approx 1.221281
\]
2. **Calculation of \( S_{200} \)**:
\[
S_{200} = \frac{(1.001)^{200} - 1}{1.001 - 1} \approx 221.280705
\]
### Summary
- \( r^{200} \approx 1.221281 \)
- \( S_{200} \approx 221.280705 \)
These values represent the calculations based on the given conditions.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución