Pregunta
upstudy study bank question image url

CASE 1: \( r>1 \) .2 .1 If \( r=1,001 \) determine the values of (a) \( \quad r^{200} \quad \) and \( S_{200} \)

Ask by Hill Turner. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( r^{200} \approx 1.221281 \) and \( S_{200} \approx 221.280705 \).

Solución

To solve the problem, we need to calculate \( r^{200} \) and \( S_{200} \) given that \( r = 1.001 \) and \( r > 1 \). ### Step 1: Calculate \( r^{200} \) We can calculate \( r^{200} \) using the formula: \[ r^{200} = (1.001)^{200} \] ### Step 2: Calculate \( S_{200} \) Assuming \( S_{200} \) refers to the sum of a geometric series, we can use the formula for the sum of the first \( n \) terms of a geometric series: \[ S_n = a \frac{r^n - 1}{r - 1} \] where: - \( a \) is the first term of the series, - \( r \) is the common ratio, - \( n \) is the number of terms. For this case, we will assume \( a = 1 \) (the first term) and \( n = 200 \). Thus, the formula becomes: \[ S_{200} = \frac{(1.001)^{200} - 1}{1.001 - 1} \] Now, let's calculate both \( r^{200} \) and \( S_{200} \). I'll perform these calculations now. Calculate the value by following steps: - step0: Calculate: \(1.001^{200}\) - step1: Convert the expressions: \(\left(\frac{1001}{1000}\right)^{200}\) - step2: Use the properties of exponents: \(\frac{1001^{200}}{1000^{200}}\) Calculate or simplify the expression \( ((1.001)^200 - 1) / (1.001 - 1) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(1.001^{200}-1\right)}{\left(1.001-1\right)}\) - step1: Remove the parentheses: \(\frac{1.001^{200}-1}{1.001-1}\) - step2: Convert the expressions: \(\frac{\left(\frac{1001}{1000}\right)^{200}-1}{1.001-1}\) - step3: Subtract the numbers: \(\frac{\frac{1001^{200}-1000^{200}}{1000^{200}}}{1.001-1}\) - step4: Subtract the numbers: \(\frac{\frac{1001^{200}-1000^{200}}{1000^{200}}}{0.001}\) - step5: Convert the expressions: \(\frac{\frac{1001^{200}-1000^{200}}{1000^{200}}}{\frac{1}{1000}}\) - step6: Multiply by the reciprocal: \(\frac{1001^{200}-1000^{200}}{1000^{200}}\times 1000\) - step7: Reduce the numbers: \(\frac{1001^{200}-1000^{200}}{1000^{199}}\times 1\) - step8: Multiply: \(\frac{1001^{200}-1000^{200}}{1000^{199}}\) ### Results 1. **Calculation of \( r^{200} \)**: \[ r^{200} = (1.001)^{200} \approx 1.221281 \] 2. **Calculation of \( S_{200} \)**: \[ S_{200} = \frac{(1.001)^{200} - 1}{1.001 - 1} \approx 221.280705 \] ### Summary - \( r^{200} \approx 1.221281 \) - \( S_{200} \approx 221.280705 \) These values represent the calculations based on the given conditions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

For \( r = 1.001 \), calculating \( r^{200} \) gives us \( 1.001^{200} \), which can be approximated using the formula for exponential growth. This results in a value around \( 1.2214 \), indicating significant growth over 200 iterations due to the compounding effect of being slightly more than 1. Now, to find \( S_{200} \), the sum of the first 200 terms in a geometric series where the first term \( a = 1 \) and the common ratio \( r = 1.001 \), we use the formula \( S_n = a \frac{r^n - 1}{r - 1} \). Plugging in our values, we get \( S_{200} \approx 1 \cdot \frac{1.2214 - 1}{0.001} \approx 221.4 \), which reflects the accumulated sum of our geometric progression!

preguntas relacionadas

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad