Pregunta
Martin simplified the composed function \( f(x)=\sin (\arctan x) \). His work is shown below. Step 1: \( f(x)=\sin A \), where \( A=\arctan x \) and \( x=\tan A \) Step 2: \( \tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{x}{1} \) Step 3: hypotenuse \( =\sqrt{1^{2}-x^{2}}=\sqrt{1-x^{2}} \) Step 4: \( \sin A=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{x}{\sqrt{1-x^{2}}} \) In which step did Martin make his first error? (1 point) step 1 step 2 step 3 step 4 He did not make an error.
Ask by Phillips Chan. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The first error is in Step 3.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Mind Expander
In Step 3, Martin made his first error. When establishing the relationship between the sides of a right triangle using the arctangent function, he should have calculated the hypotenuse as \( \sqrt{1 + x^2} \) instead of \( \sqrt{1 - x^2} \). The opposite side is \( x \), and the adjacent side is \( 1 \), so the hypotenuse should be derived from the Pythagorean theorem: \( \sqrt{1^2 + x^2} = \sqrt{1 + x^2} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium