Pregunta
upstudy study bank question image url

termine the highest common factor (HCF) of 6480 and 1728

Ask by Howell Bowen. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The highest common factor (HCF) of 6480 and 1728 is 144.

Solución

To find the highest common factor (HCF) of 6480 and 1728, we can use the prime factorization method. First, let's find the prime factorization of both numbers: 6480 = 2^4 * 3^2 * 5 * 7 1728 = 2^6 * 3^3 Now, we need to find the common prime factors between the two numbers and take the lowest power of each common factor. The common prime factors are 2 and 3. The lowest power of 2 is 2^4 (from 6480). The lowest power of 3 is 3^2 (from 6480). Therefore, the highest common factor (HCF) of 6480 and 1728 is 2^4 * 3^2 = 144.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the highest common factor (HCF) of 6480 and 1728, we can use the prime factorization method. The prime factorization of 6480 is \(2^4 \times 3^4 \times 5\) and for 1728, it is \(2^6 \times 3^3\). The HCF is obtained by taking the lowest powers of all prime factors present in both numbers, which gives us \(2^4 \times 3^3 = 432\). So, the HCF of 6480 and 1728 is 432! Now, did you know that this method of using prime factorization is not just for finding HCF? It's also handy for simplifying fractions! By breaking down the numerator and denominator into their prime components, you can find the HCF quickly, which will help you reduce the fraction to its simplest form. Additionally, the concept of HCF isn’t just a classroom staple; it has real-world implications! It’s especially relevant in situations like evenly distributing items. For example, if you have 6480 apples and 1728 oranges, finding the HCF tells you the largest number of identical boxes you can create without leftovers. Isn’t that a juicy way to use math?

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad