\( 3.1 \frac{\left(4 x^{2} y^{3}\right)^{3}}{x^{4} y} \) as \( x=-2 \) en \( y=-1 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
Laten we de uitdrukking eerst vereenvoudigen. We hebben \( 3.1 \frac{\left(4 x^{2} y^{3}\right)^{3}}{x^{4} y} \). Eerst berekenen we \( \left(4 x^{2} y^{3}\right)^{3} \): \[ = 4^{3} (x^{2})^{3} (y^{3})^{3} = 64 x^{6} y^{9} \] Nu vervangen we dit in de oorspronkelijke uitdrukking: \[ 3.1 \frac{64 x^{6} y^{9}}{x^{4} y} = 3.1 \cdot 64 \cdot \frac{x^{6}}{x^{4}} \cdot \frac{y^{9}}{y} \] Door de exponenten te vereenvoudigen: \[ = 3.1 \cdot 64 \cdot x^{2} \cdot y^{8} \] Nu substitueren we \( x = -2 \) en \( y = -1 \): \[ = 3.1 \cdot 64 \cdot (-2)^{2} \cdot (-1)^{8} \] Bereken dit: \( (-2)^{2} = 4 \) en \( (-1)^{8} = 1 \), dus: \[ = 3.1 \cdot 64 \cdot 4 \cdot 1 = 3.1 \cdot 256 = 793.6 \] De uiteindelijke waarde van de uitdrukking is \( 793.6 \).
