Pregunta
upstudy study bank question image url

Juan invested \( \$ 5300 \) in an account that pays an annual interest rate of \( 3.7 \% \), compounded daily. Assume there are 365 days in each year. Answer each part. If necessary, refer to the list of financial formulas. (a) Find the amount in the account after one year, assuming no withdrawals are made. Do not round any intermediate computations, and round your answer to the nearest cent. s! (b) Find the effective annual interest rate, expressed as a percentage. Do not round any intermediate computations, and round your answer to the nearest hundredth of a percent. \( \square \) \( \% \)

Ask by Wade Delgado. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After one year, the amount in the account is $5,499.76. The effective annual interest rate is approximately 3.77%.

Solución

To find the amount in the account after one year, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount in the account after \( t \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate, - \( n \) is the number of times the interest is compounded per year, - \( t \) is the time in years. Given: - \( P = \$5300 \), - \( r = 3.7\% = 0.037 \), - \( n = 365 \) (compounded daily), - \( t = 1 \) year. Substitute the values into the formula: \[ A = 5300 \left(1 + \frac{0.037}{365}\right)^{365 \cdot 1} \] Now, we can calculate the amount in the account after one year. Calculate the value by following steps: - step0: Calculate: \(5300\left(1+\frac{0.037}{365}\right)^{365}\) - step1: Divide the terms: \(5300\left(1+\frac{37}{365000}\right)^{365}\) - step2: Add the numbers: \(5300\left(\frac{365037}{365000}\right)^{365}\) - step3: Simplify: \(5300\times \frac{365037^{365}}{365000^{365}}\) - step4: Rewrite the expression: \(100\times 53\times \frac{365037^{365}}{365000^{365}}\) - step5: Rewrite the expression: \(100\times 53\times \frac{365037^{365}}{1000^{365}\times 365^{365}}\) - step6: Rewrite the expression: \(10^{2}\times 53\times \frac{365037^{365}}{10^{1095}\times 365^{365}}\) - step7: Reduce the numbers: \(53\times \frac{365037^{365}}{10^{1093}\times 365^{365}}\) - step8: Multiply the fractions: \(\frac{53\times 365037^{365}}{10^{1093}\times 365^{365}}\) The amount in the account after one year is approximately $5499.76. Now, to find the effective annual interest rate, we can use the formula: \[ r_{\text{effective}} = \left(1 + \frac{r}{n}\right)^n - 1 \] Substitute the values into the formula: \[ r_{\text{effective}} = \left(1 + \frac{0.037}{365}\right)^{365} - 1 \] Now, we can calculate the effective annual interest rate. Calculate the value by following steps: - step0: Calculate: \(\left(1+\frac{0.037}{365}\right)^{365}-1\) - step1: Divide the terms: \(\left(1+\frac{37}{365000}\right)^{365}-1\) - step2: Add the numbers: \(\left(\frac{365037}{365000}\right)^{365}-1\) - step3: Rewrite the expression: \(\frac{365037^{365}}{365000^{365}}-1\) - step4: Reduce fractions to a common denominator: \(\frac{365037^{365}}{365000^{365}}-\frac{365000^{365}}{365000^{365}}\) - step5: Transform the expression: \(\frac{365037^{365}-365000^{365}}{365000^{365}}\) The effective annual interest rate is approximately 3.7691%. Therefore, the amount in the account after one year is $5499.76, and the effective annual interest rate is approximately 3.7691%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle Juan's investment, we can utilize the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (in decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Here, Juan's principal \( P = 5300 \), the annual interest rate \( r = 0.037 \), compounding frequency \( n = 365 \), and \( t = 1 \). ### (a) Plugging in the values: \[ A = 5300 \left(1 + \frac{0.037}{365}\right)^{365 \cdot 1} \] Calculating inside the parentheses: \[ A = 5300 \left(1 + 0.00010136986\right)^{365} \approx 5300 \left(1.038075000\right) \approx 5501.20 \] So, the amount in the account after one year is approximately \( \$ 5501.20 \). ### (b) The formula for the effective annual interest rate (EAR) is given by: \[ \text{EAR} = \left(1 + \frac{r}{n}\right)^{n} - 1 \] Using the same values of \( r \) and \( n \): \[ \text{EAR} = \left(1 + \frac{0.037}{365}\right)^{365} - 1 \] \[ \text{EAR} \approx (1.038075) - 1 \] \[ \text{EAR} \approx 0.038075 \text{ or } 3.81\% \] So, the effective annual interest rate is approximately \( 3.81\% \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad