Pregunta
upstudy study bank question image url

Show that the roots of the following equation are real: \[ 2 x^{2}+3 x-3=6 x^{2}-8 x+4 \] Answer: \( \Delta=\square \); therefore the equation has two real roots.

Ask by Ruiz Paul. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation has two real roots because the discriminant \(\Delta\) is positive.

Solución

Solve the equation \( 2x^{2}+3x-3=6x^{2}-8x+4 \). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(2x^{2}+3x-3=6x^{2}-8x+4\) - step1: Move the expression to the left side: \(-4x^{2}+11x-7=0\) - step2: Factor the expression: \(\left(-x+1\right)\left(4x-7\right)=0\) - step3: Separate into possible cases: \(\begin{align}&4x-7=0\\&-x+1=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=\frac{7}{4}\\&x=1\end{align}\) - step5: Rewrite: \(x_{1}=1,x_{2}=\frac{7}{4}\) The roots of the equation \(2x^{2}+3x-3=6x^{2}-8x+4\) are \(x_{1}=1\) and \(x_{2}=1.75\). Since the discriminant \(\Delta\) is positive, the equation has two real roots.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

First, let's simplify the equation. Moving all terms to one side, we get: \[ 2x^2 + 3x - 3 - 6x^2 + 8x - 4 = 0 \] Which simplifies to: \[ -4x^2 + 11x - 7 = 0 \] Now, to apply the quadratic formula and check for real roots, we need the discriminant, \( \Delta \): \[ \Delta = b^2 - 4ac = (11)^2 - 4(-4)(-7) = 121 - 112 = 9 \] Since \( \Delta = 9 \) is greater than zero, we conclude that the equation has two distinct real roots. Real-world applications of quadratic equations can be found in various fields like physics and engineering, where projectile motion and structural analysis often involve such equations. For instance, the path of a thrown ball can be modeled using a quadratic equation that accounts for height versus time—talk about applying math in real life! When solving quadratic equations, a common mistake is forgetting to simplify the equation properly before calculating the discriminant. Ensure to always combine like terms or move all terms to one side first! It can also be easy to overlook that a negative discriminant indicates complex roots; so double-checking the computations is key to avoiding confusion.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad