Pregunta
upstudy study bank question image url

The standard normal probability function is used to describe many different populations. Its graph is the well-known normal curve. This function is defined below. Give the intervals where the functions is increasing and decreasing. \( f(x)=\frac{1}{\sqrt{5 \pi}} e^{-x^{2} / 4} \)

Ask by Beck Vaughn. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = \frac{1}{\sqrt{5\pi}} e^{-x^{2}/4} \) is increasing on the interval \( (-\infty, 0) \) and decreasing on the interval \( (0, \infty) \).

Solución

We start with the function   f(x) = (1/√(5π)) · e^(–x²/4). Since the constant (1/√(5π)) is positive, the behavior of f(x) is determined by the exponential part, e^(–x²/4). Step 1. Differentiate f(x): Let A = 1/√(5π), so   f(x) = A · e^(–x²/4). Using the chain rule, compute the derivative of the exponential function:   d/dx [e^(–x²/4)] = e^(–x²/4) · (d/dx (–x²/4)). Differentiate (–x²/4):   d/dx (–x²/4) = –(1/2)x. Thus, the derivative becomes:   f'(x) = A · e^(–x²/4) · (–(1/2)x) = –(A x)/(2) · e^(–x²/4). Step 2. Analyzing the sign of f'(x): Recall that: • A = 1/√(5π) > 0, • e^(–x²/4) > 0 for all x. Therefore, the sign of f'(x) depends only on –(x/2). • If x < 0, then –(x/2) is positive; hence f'(x) > 0. This implies f is increasing on the interval (–∞, 0). • If x > 0, then –(x/2) is negative; hence f'(x) < 0, which means f is decreasing on the interval (0, ∞). Step 3. Conclusion: The function f(x) is increasing for x in (–∞, 0) and decreasing for x in (0, ∞). The point x = 0 is a local maximum. Thus, the function increases on (–∞, 0) and decreases on (0, ∞).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the intervals where the function \( f(x) = \frac{1}{\sqrt{5 \pi}} e^{-x^{2} / 4} \) is increasing or decreasing, we need to find the derivative \( f'(x) \) and analyze its sign. After computing the derivative, we find \( f'(x) \) which is \( f'(x) = -\frac{x}{2\sqrt{5\pi}} e^{-x^{2}/4} \). The function is decreasing when \( x > 0 \) and increasing when \( x < 0 \). Hence, the intervals are: increasing on \( (-\infty, 0) \) and decreasing on \( (0, \infty) \). Understanding the shape of the normal curve is not only fascinating but essential. This curve is symmetric around the mean (which is zero in a standard normal distribution) and tapers off towards both ends. This characteristic makes it a crucial component in statistics, especially when analyzing data that follow a normal distribution. The standard normal distribution, represented by this function, also has practical applications in various fields, including psychology for scoring IQ tests, finance for assessing risk, and even in quality control in manufacturing. In each case, understanding where the function increases or decreases helps professionals make informed decisions related to probabilities and outcomes based on data distributions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad