Responder
\[ \frac{dy}{dx} = -\frac{\sin(3x+2y)+3x\cos(3x+2y)+y\sin(x)}{2x\cos(3x+2y)-\cos(x)} \]
Solución
Find the derivative with respect to \( x \) for \( x\sin(3x+2y)=y\cos(x) \).
Find the first derivative by following steps:
- step0: Find the derivative with respect to \(x\):
\(x\sin\left(3x+2y\right)=y\cos\left(x\right)\)
- step1: Take the derivative:
\(\frac{d}{dx}\left(x\sin\left(3x+2y\right)\right)=\frac{d}{dx}\left(y\cos\left(x\right)\right)\)
- step2: Calculate the derivative:
\(\sin\left(3x+2y\right)+x\cos\left(3x+2y\right)\left(3+2\frac{dy}{dx}\right)=\frac{d}{dx}\left(y\cos\left(x\right)\right)\)
- step3: Calculate the derivative:
\(\sin\left(3x+2y\right)+x\cos\left(3x+2y\right)\left(3+2\frac{dy}{dx}\right)=\frac{dy}{dx}\times \cos\left(x\right)-y\sin\left(x\right)\)
- step4: Rewrite the expression:
\(\sin\left(3x+2y\right)+x\cos\left(3x+2y\right)\left(3+2\frac{dy}{dx}\right)=\cos\left(x\right)\frac{dy}{dx}-y\sin\left(x\right)\)
- step5: Move the expression to the left side:
\(\sin\left(3x+2y\right)+x\cos\left(3x+2y\right)\left(3+2\frac{dy}{dx}\right)-\left(\cos\left(x\right)\frac{dy}{dx}-y\sin\left(x\right)\right)=0\)
- step6: Remove the parentheses:
\(\sin\left(3x+2y\right)+x\cos\left(3x+2y\right)\left(3+2\frac{dy}{dx}\right)-\cos\left(x\right)\frac{dy}{dx}+y\sin\left(x\right)=0\)
- step7: Calculate:
\(\sin\left(3x+2y\right)+3x\cos\left(3x+2y\right)+2x\cos\left(3x+2y\right)\frac{dy}{dx}-\cos\left(x\right)\frac{dy}{dx}+y\sin\left(x\right)=0\)
- step8: Collect like terms:
\(\sin\left(3x+2y\right)+3x\cos\left(3x+2y\right)+y\sin\left(x\right)+\left(2x\cos\left(3x+2y\right)-\cos\left(x\right)\right)\frac{dy}{dx}=0\)
- step9: Move the constant to the right side:
\(\left(2x\cos\left(3x+2y\right)-\cos\left(x\right)\right)\frac{dy}{dx}=0-\left(\sin\left(3x+2y\right)+3x\cos\left(3x+2y\right)+y\sin\left(x\right)\right)\)
- step10: Subtract the terms:
\(\left(2x\cos\left(3x+2y\right)-\cos\left(x\right)\right)\frac{dy}{dx}=-\sin\left(3x+2y\right)-3x\cos\left(3x+2y\right)-y\sin\left(x\right)\)
- step11: Divide both sides:
\(\frac{\left(2x\cos\left(3x+2y\right)-\cos\left(x\right)\right)\frac{dy}{dx}}{2x\cos\left(3x+2y\right)-\cos\left(x\right)}=\frac{-\sin\left(3x+2y\right)-3x\cos\left(3x+2y\right)-y\sin\left(x\right)}{2x\cos\left(3x+2y\right)-\cos\left(x\right)}\)
- step12: Divide the numbers:
\(\frac{dy}{dx}=-\frac{\sin\left(3x+2y\right)+3x\cos\left(3x+2y\right)+y\sin\left(x\right)}{2x\cos\left(3x+2y\right)-\cos\left(x\right)}\)
The derivative of \( \frac{dy}{dx} \) with respect to \( x \) using implicit differentiation is given by:
\[ \frac{dy}{dx} = -\frac{\sin(3x+2y)+3x\cos(3x+2y)+y\sin(x)}{2x\cos(3x+2y)-\cos(x)} \]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución