Pregunta
upstudy study bank question image url

Question 9 Find a linear differential operator that annihilates the function \( x^{3}(1+7 x) \) \( O D^{2}+1 \) \( O D^{3} \) \( O D^{4} \) \( O D^{3}+2 \) \( O D^{5} \)

Ask by Vaughn Franklin. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct linear differential operator that annihilates the function \( x^{3}(1+7x) \) is \( OD^{5} \).

Solución

We are asked to find a linear differential operator (with constant coefficients) that annihilates the function   f(x) = x³(1 + 7x) = x³ + 7x⁴. A common method when dealing with polynomials is to use the fact that the (n+1)th derivative of a polynomial of degree n is zero. Here, f(x) is a polynomial of degree 4. Thus, taking five derivatives should produce the zero function:   D⁵ f(x) = 0. Let’s verify this briefly for each term: 1. For x³: the derivatives are   D x³ = 3x²,   D² x³ = 6x,   D³ x³ = 6,   D⁴ x³ = 0,   D⁵ x³ = 0. 2. For 7x⁴:   D (7x⁴) = 28x³,   D² (7x⁴) = 84x²,   D³ (7x⁴) = 168x,   D⁴ (7x⁴) = 168,   D⁵ (7x⁴) = 0. Since D⁵ annihilates both terms, we have D⁵ f(x) = 0. Now, comparing this with the answer choices:   OD² + 1, OD³, OD⁴, OD³ + 2, OD⁵ we see that the operator D⁵ (or OD⁵) is the one that annihilates the given function. Therefore, the correct operator is:   OD⁵.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the appropriate linear differential operator that annihilates the function \( x^{3}(1+7 x) \), we first need to find the highest derivative that produces a zero function when applied. The function \( x^{3}(1+7 x) \) is a polynomial of degree 4. Generally, a linear differential operator of order \( n \) can annihilate a polynomial of degree \( m \) if \( n \) is greater than \( m \). In this case, since \( m = 4 \), any operator of order \( 5 \) or higher will annihilate it. Hence, \( O D^{5} \) is a suitable choice. To explore this further, if you take derivatives of the original function, you would find that going beyond the fourth derivative yields zero, aligning perfectly with our findings. This polynomial remains interesting as it showcases how differential operators interact with polynomial expressions in calculus, allowing for a deeper exploration of function behavior. As for real-world applications, differential operators play a crucial role in engineering, especially in systems modeling. For example, they are extensively used in control theory to design systems that can respond predictively to various factors, ensuring stability and efficiency in processes like automated manufacturing or robotics. Understanding how linear operators function opens the door to advanced designs that make these technologies not just possible, but reliable and effective!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad