Pregunta
upstudy study bank question image url

Find the quotient and remainder using synthetic division. \[ \frac{3 x^{4}+8 x^{3}+5 x^{2}+x+1}{x+\frac{2}{3}} \] quotient remainder

Ask by Weber Ball. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Quotient: \( 3x^{3} + 6x^{2} + x + \frac{1}{3} \) Remainder: \( \frac{7}{9} \)

Solución

To perform synthetic division for   (3x⁴ + 8x³ + 5x² + x + 1) ÷ (x + 2⁄3), first note that the divisor x + 2⁄3 can be set equal to zero to find the synthetic divisor value:   x + 2⁄3 = 0 ⟹ x = –2⁄3. Now, list the coefficients of the dividend:   3, 8, 5, 1, 1. Step-by-step synthetic division:   1. Write the divisor –2⁄3 to the left. Write the coefficients:       –2⁄3 | 3  8  5  1  1   2. Bring down the first coefficient (3):          3   3. Multiply 3 by –2⁄3:          3 × (–2⁄3) = –2.      Place –2 under the second coefficient (8).   4. Add: 8 + (–2) = 6.         Coefficients now: 3, 6   5. Multiply 6 by –2⁄3:          6 × (–2⁄3) = –4.      Place –4 under third coefficient (5).   6. Add: 5 + (–4) = 1.         Coefficients now: 3, 6, 1   7. Multiply 1 by –2⁄3:          1 × (–2⁄3) = –2⁄3.      Place –2⁄3 under fourth coefficient (1).   8. Add: 1 + (–2⁄3) = 1⁄3.         Coefficients now: 3, 6, 1, 1⁄3   9. Multiply 1⁄3 by –2⁄3:          (1⁄3) × (–2⁄3) = –2⁄9.      Place –2⁄9 under fifth coefficient (1).   10. Add: 1 + (–2⁄9) = 7⁄9.         Remainder: 7⁄9 The resulting coefficients correspond to the quotient polynomial. Since we started with a fourth-degree polynomial and divided by a linear term, the quotient will be a cubic polynomial. Thus, the quotient is:   3x³ + 6x² + x + 1⁄3 and the remainder is:   7⁄9. Final Answer:   Quotient: 3x³ + 6x² + x + 1⁄3   Remainder: 7⁄9

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To perform synthetic division with the polynomial \(3x^4 + 8x^3 + 5x^2 + x + 1\) divided by \(x + \frac{2}{3}\), we first convert the divisor to the form \(x - r\) where \(r = -\frac{2}{3}\). ### Step 1: Set Up Synthetic Division The coefficients of the polynomial are: - \(3\) (for \(x^4\)) - \(8\) (for \(x^3\)) - \(5\) (for \(x^2\)) - \(1\) (for \(x^1\)) - \(1\) (constant term) We'll use \(-\frac{2}{3}\) as our synthetic divisor. ### Step 2: Synthetic Division Process 1. Write the coefficients: \(3, 8, 5, 1, 1\). 2. Bring down the leading coefficient \(3\) down to the bottom row. 3. Multiply \(3\) by \(-\frac{2}{3}\), which gives \(-2\), and add this to the next coefficient \(8\), resulting in \(6\). 4. Repeat the process: - Multiply \(6\) by \(-\frac{2}{3}\), giving \(-4\), add to \(5\) to get \(1\). - Multiply \(1\) by \(-\frac{2}{3}\), giving \(-\frac{2}{3}\), add to \(1\) to get \(\frac{1}{3}\). The process looks like this: \[ \begin{array}{r|rrrrr} -\frac{2}{3} & 3 & 8 & 5 & 1 & 1 \\ & & -2 & -4 & -\frac{2}{3} & -\frac{2}{9} \\ \hline & 3 & 6 & 1 & \frac{1}{3} & \frac{1}{3} \\ \end{array} \] ### Step 3: Determining the Quotient and Remainder The bottom row gives us the coefficients of the quotient and the final value is the remainder: - Quotient: \(3x^3 + 6x^2 + 1x + \frac{1}{3}\) - Remainder: \(\frac{1}{3}\) ### Final Output Quotient: \(3x^3 + 6x^2 + x + \frac{1}{3}\) Remainder: \(\frac{1}{3}\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad