olve the equation \( 20 y^{2}+1 y-12=0 \). Nrite your answers as a list of integers or reduced fractions, with your answers separated by (a) comm =or example, if you get 4 and \( -\frac{2}{3} \) as your answers, then enter \( 4,-2 / 3 \) in the box.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve the equation \( 20y^2 + y - 12 = 0 \), we can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 20, b = 1, c = -12 \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4(20)(-12) = 1 + 960 = 961 \] Now, applying the quadratic formula: \[ y = \frac{-1 \pm \sqrt{961}}{2 \times 20} = \frac{-1 \pm 31}{40} \] Calculating the two possible values for \( y \): 1. \( y = \frac{30}{40} = \frac{3}{4} \) 2. \( y = \frac{-32}{40} = -\frac{4}{5} \) Thus, the solutions are \( \frac{3}{4}, -\frac{4}{5} \). The final answer is: \(\frac{3}{4}, -\frac{4}{5}\)
