13. \( \begin{aligned}-1 x-16 y & =-1 \\ 33 x+16 y & =19\end{aligned} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To solve the system of equations: 1. From the first equation, rearranging gives us \(x + 16y = 1\). This can be written as \(x = 1 - 16y\). 2. Substitute \(x\) in the second equation: \[ 33(1 - 16y) + 16y = 19 \] Simplifying further: \[ 33 - 528y + 16y = 19 \] Combining like terms: \[ -512y + 33 = 19 \] Now, isolate \(y\): \[ -512y = 19 - 33 \quad \Rightarrow \quad -512y = -14 \quad \Rightarrow \quad y = \frac{-14}{-512} = \frac{14}{512} = \frac{7}{256} \] 3. Plug \(y\) back into the rearranged first equation to find \(x\): \[ x = 1 - 16\left(\frac{7}{256}\right) = 1 - \frac{112}{256} = 1 - \frac{7}{16} = \frac{16}{16} - \frac{7}{16} = \frac{9}{16} \] So, the solution to the system of equations is: \[ x = \frac{9}{16}, \quad y = \frac{7}{256} \]
