Responder
Here are the simplified results for each expression:
1. \( 3 \)
2. \( 8 \)
3. \( 5^{n-1-m} \)
4. \( \frac{1}{16} \)
5. \( 36 \)
6. \( 8 \)
7. \( 7 \)
8. \( \frac{1}{9} \)
9. \( -2^{p} \)
10. \( \frac{1}{125} \)
11. \( \frac{3}{4} \)
12. \( \frac{1}{6} \)
13. \( \frac{1}{25} \)
14. \( \frac{1}{5} \)
15. \( \frac{18^{x} \cdot 8^{x-1}}{9^{x+1} \cdot 4^{2x-1}} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\frac{7^{2x-1}}{49^{x-1}}\)
- step1: Calculate:
\(\frac{7^{2x-1}}{\left(7^{2}\right)^{x-1}}\)
- step2: Calculate:
\(\frac{7^{2x-1}}{7^{2x-2}}\)
- step3: Calculate:
\(7\)
Calculate or simplify the expression \( \frac{9^{a} \cdot 4^{a-1}}{3^{2 a-1} \cdot 2^{2 a}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{9^{a}\times 4^{a-1}}{3^{2a-1}\times 2^{2a}}\)
- step1: Factor the expression:
\(\frac{3^{2a}\times 4^{a-1}}{3^{2a-1}\times 2^{2a}}\)
- step2: Reduce the fraction:
\(\frac{3\times 4^{a-1}}{2^{2a}}\)
- step3: Factor the expression:
\(\frac{3\times 2^{2a-2}}{2^{2a}}\)
- step4: Reduce the fraction:
\(\frac{3}{2^{2}}\)
- step5: Evaluate the power:
\(\frac{3}{4}\)
Calculate or simplify the expression \( \frac{18^{x} \cdot 8^{x-1}}{9^{x+1} \cdot 4^{2 x-1}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{18^{x}\times 8^{x-1}}{9^{x+1}\times 4^{2x-1}}\)
- step1: Factor the expression:
\(\frac{9^{x}\times 2^{x}\times 8^{x-1}}{9^{x+1}\times 4^{2x-1}}\)
- step2: Reduce the fraction:
\(\frac{2^{x}\times 8^{x-1}}{9\times 4^{2x-1}}\)
- step3: Factor the expression:
\(\frac{2^{x}\times 8^{x-1}}{9\times 2^{4x-2}}\)
- step4: Reduce the fraction:
\(\frac{8^{x-1}}{9\times 2^{3x-2}}\)
- step5: Factor the expression:
\(\frac{2^{3x-3}}{9\times 2^{3x-2}}\)
- step6: Reduce the fraction:
\(\frac{1}{9\times 2}\)
- step7: Calculate:
\(\frac{1}{18}\)
Calculate or simplify the expression \( \frac{5^{n+4}}{5^{m+5}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5^{n+4}}{5^{m+5}}\)
- step1: Multiply by \(a^{-n}:\)
\(5^{n+4}\times 5^{-\left(m+5\right)}\)
- step2: Calculate:
\(5^{n+4}\times 5^{-m-5}\)
- step3: Multiply:
\(5^{n+4-m-5}\)
- step4: Calculate:
\(5^{n-1-m}\)
Calculate or simplify the expression \( \frac{2^{x+5}}{2^{x+2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2^{x+5}}{2^{x+2}}\)
- step1: Multiply by \(a^{-n}:\)
\(2^{x+5}\times 2^{-\left(x+2\right)}\)
- step2: Calculate:
\(2^{x+5}\times 2^{-x-2}\)
- step3: Multiply:
\(2^{x+5-x-2}\)
- step4: Calculate:
\(2^{3}\)
- step5: Evaluate the power:
\(8\)
Calculate or simplify the expression \( \frac{3^{2 x+1}}{3^{2 x}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3^{2x+1}}{3^{2x}}\)
- step1: Multiply by \(a^{-n}:\)
\(3^{2x+1}\times 3^{-2x}\)
- step2: Multiply:
\(3^{2x+1-2x}\)
- step3: Calculate:
\(3\)
Calculate or simplify the expression \( \frac{6^{4 x-2}}{6^{4 x-4}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{6^{4x-2}}{6^{4x-4}}\)
- step1: Multiply by \(a^{-n}:\)
\(6^{4x-2}\times 6^{-\left(4x-4\right)}\)
- step2: Calculate:
\(6^{4x-2}\times 6^{-4x+4}\)
- step3: Multiply:
\(6^{4x-2-4x+4}\)
- step4: Calculate:
\(6^{2}\)
- step5: Evaluate the power:
\(36\)
Calculate or simplify the expression \( \frac{4^{n}}{2^{2 n-3}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4^{n}}{2^{2n-3}}\)
- step1: Calculate:
\(\frac{\left(2^{2}\right)^{n}}{2^{2n-3}}\)
- step2: Calculate:
\(\frac{2^{2n}}{2^{2n-3}}\)
- step3: Calculate:
\(2^{3}\)
Calculate or simplify the expression \( \frac{2^{3 x+5}}{2^{3 x+9}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2^{3x+5}}{2^{3x+9}}\)
- step1: Multiply by \(a^{-n}:\)
\(2^{3x+5}\times 2^{-\left(3x+9\right)}\)
- step2: Calculate:
\(2^{3x+5}\times 2^{-3x-9}\)
- step3: Multiply:
\(2^{3x+5-3x-9}\)
- step4: Calculate:
\(2^{-4}\)
- step5: Express with a positive exponent:
\(\frac{1}{2^{4}}\)
- step6: Evaluate the power:
\(\frac{1}{16}\)
Calculate or simplify the expression \( \frac{50^{x+1}}{2^{x+1} \cdot 25^{x+2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{50^{x+1}}{2^{x+1}\times 25^{x+2}}\)
- step1: Factor the expression:
\(\frac{2^{x+1}\times 25^{x+1}}{2^{x+1}\times 25^{x+2}}\)
- step2: Reduce the fraction:
\(\frac{25^{x+1}}{25^{x+2}}\)
- step3: Divide the numbers:
\(\frac{1}{25^{x+2-\left(x+1\right)}}\)
- step4: Subtract the terms:
\(\frac{1}{25^{1}}\)
- step5: Simplify:
\(\frac{1}{25}\)
Calculate or simplify the expression \( \frac{36^{x+2}}{6^{2 x+5}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{36^{x+2}}{6^{2x+5}}\)
- step1: Calculate:
\(\frac{\left(6^{2}\right)^{x+2}}{6^{2x+5}}\)
- step2: Calculate:
\(\frac{6^{2x+4}}{6^{2x+5}}\)
- step3: Calculate:
\(6^{-1}\)
Calculate or simplify the expression \( -\frac{16^{p-3}}{8^{p-4}} \).
Simplify the expression by following steps:
- step0: Solution:
\(-\frac{16^{p-3}}{8^{p-4}}\)
- step1: Calculate:
\(-2^{p}\)
Calculate or simplify the expression \( \frac{9^{x+1}}{3^{2 x} \cdot 81} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{9^{x+1}}{3^{2x}\times 81}\)
- step1: Multiply:
\(\frac{9^{x+1}}{3^{2x+4}}\)
- step2: Factor the expression:
\(\frac{3^{2x+2}}{3^{2x+4}}\)
- step3: Divide the numbers:
\(\frac{1}{3^{2x+4-\left(2x+2\right)}}\)
- step4: Subtract the terms:
\(\frac{1}{3^{2}}\)
- step5: Evaluate the power:
\(\frac{1}{9}\)
Calculate or simplify the expression \( \frac{5 \cdot 45^{y}}{9^{y} \cdot 5^{y+2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5\times 45^{y}}{9^{y}\times 5^{y+2}}\)
- step1: Multiply by \(a^{-n}:\)
\(\frac{5\times 45^{y}\times 5^{-\left(y+2\right)}}{9^{y}}\)
- step2: Calculate:
\(\frac{5\times 45^{y}\times 5^{-y-2}}{9^{y}}\)
- step3: Multiply:
\(\frac{5^{-1-y}\times 45^{y}}{9^{y}}\)
- step4: Factor the expression:
\(\frac{5^{-1-y}\times 9^{y}\times 5^{y}}{9^{y}}\)
- step5: Reduce the fraction:
\(5^{-1-y}\times 5^{y}\)
- step6: Express with a positive exponent:
\(\frac{1}{5^{1+y}}\times 5^{y}\)
- step7: Rewrite the expression:
\(\frac{5^{y}}{5^{1+y}}\)
- step8: Calculate:
\(5^{y-\left(1+y\right)}\)
- step9: Calculate:
\(5^{-1}\)
- step10: Express with a positive exponent:
\(\frac{1}{5}\)
Calculate or simplify the expression \( \frac{5^{x} \cdot 25^{x-1}}{5 \cdot 125^{x}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{5^{x}\times 25^{x-1}}{5\times 125^{x}}\)
- step1: Multiply by \(a^{-n}:\)
\(\frac{5^{x}\times 25^{x-1}\times 5^{-1}}{125^{x}}\)
- step2: Multiply:
\(\frac{5^{3x-3}}{125^{x}}\)
- step3: Factor the expression:
\(\frac{5^{3x-3}}{5^{3x}}\)
- step4: Divide the numbers:
\(\frac{1}{5^{3x-\left(3x-3\right)}}\)
- step5: Subtract the terms:
\(\frac{1}{5^{3}}\)
- step6: Evaluate the power:
\(\frac{1}{125}\)
Here are the simplified results for each expression:
1. \( \frac{3^{2x+1}}{3^{2x}} = 3^{(2x+1) - 2x} = 3^1 = 3 \)
2. \( \frac{2^{x+5}}{2^{x+2}} = 2^{(x+5) - (x+2)} = 2^{3} = 8 \)
3. \( \frac{5^{n+4}}{5^{m+5}} = 5^{(n+4) - (m+5)} = 5^{n-1-m} \)
4. \( \frac{2^{3x+5}}{2^{3x+9}} = 2^{(3x+5) - (3x+9)} = 2^{-4} = \frac{1}{16} \)
5. \( \frac{6^{4x-2}}{6^{4x-4}} = 6^{(4x-2) - (4x-4)} = 6^{2} = 36 \)
6. \( \frac{4^{n}}{2^{2n-3}} = \frac{(2^2)^{n}}{2^{2n-3}} = \frac{2^{2n}}{2^{2n-3}} = 2^{3} = 8 \)
7. \( \frac{7^{2x-1}}{49^{x-1}} = \frac{7^{2x-1}}{(7^2)^{x-1}} = \frac{7^{2x-1}}{7^{2(x-1)}} = 7^{(2x-1) - 2(x-1)} = 7^{2x-1-2x+2} = 7^{1} = 7 \)
8. \( \frac{9^{x+1}}{3^{2x} \cdot 81} = \frac{(3^2)^{x+1}}{3^{2x} \cdot 3^4} = \frac{3^{2(x+1)}}{3^{2x} \cdot 3^4} = \frac{3^{2x+2}}{3^{2x+4}} = 3^{(2x+2) - (2x+4)} = 3^{-2} = \frac{1}{9} \)
9. \( -\frac{16^{p-3}}{8^{p-4}} = -\frac{(2^4)^{p-3}}{(2^3)^{p-4}} = -\frac{2^{4(p-3)}}{2^{3(p-4)}} = -2^{4p-12 - 3p + 12} = -2^{p} \)
10. \( \frac{5^{x} \cdot 25^{x-1}}{5 \cdot 125^{x}} = \frac{5^{x} \cdot (5^2)^{x-1}}{5 \cdot (5^3)^{x}} = \frac{5^{x} \cdot 5^{2x-2}}{5^{1+3x}} = \frac{5^{x + 2x - 2}}{5^{3x + 1}} = \frac{5^{3x - 2}}{5^{3x + 1}} = 5^{(3x - 2) - (3x + 1)} = 5^{-3} = \frac{1}{125} \)
11. \( \frac{9^{a} \cdot 4^{a-1}}{3^{2a-1} \cdot 2^{2a}} = \frac{(3^2)^{a} \cdot (2^2)^{a-1}}{3^{2a-1} \cdot 2^{2a}} = \frac{3^{2a} \cdot 2^{2a-2}}{3^{2a-1} \cdot 2^{2a}} = \frac{3^{2a} \cdot 2^{2a-2}}{3^{2a-1} \cdot 2^{2a}} = \frac{3^{2a}}{3^{2a-1}} \cdot \frac{2^{2a-2}}{2^{2a}} = 3^{1} \cdot 2^{-2} = \frac{3}{4} \)
12. \( \frac{36^{x+2}}{6^{2x+5}} = \frac{(6^2)^{x+2}}{6^{2x+5}} = \frac{6^{2(x+2)}}{6^{2x+5}} = 6^{2x+4 - (2x+5)} = 6^{-1} = \frac{1}{6} \)
13. \( \frac{50^{x+1}}{2^{x+1} \cdot 25^{x+2}} = \frac{(2 \cdot 25)^{x+1}}{2^{x+1} \cdot (5^2)^{x+2}} = \frac{2^{x+1} \cdot 5^{2(x+1)}}{2^{x+1} \cdot 5^{2x+4}} = \frac{5^{2(x+1)}}{5^{2x+4}} = 5^{2x+2 - (2x+4)} = 5^{-2} = \frac{1}{25} \)
14. \( \frac{5 \cdot 45^{y}}{9^{y} \cdot 5^{y+2}} = \frac{5 \cdot (5 \cdot 9)^{y}}{9^{y} \cdot 5^{y+2}} = \frac{5^{1+y} \cdot 9^{y}}{9^{y} \cdot 5^{y+2}} = \frac{5^{1+y}}{5^{y+2}} = 5^{1+y - (y+2)} = 5^{-1} = \frac{1}{5} \)
15. \( \frac{18^{x} \cdot 8^{x-1}}{9^{x+1} \cdot 4^{2x-1}} = \frac{(2 \cdot 9)^{x} \cdot (2^3)^{x-1}}{(3^2)^{x+1} \cdot (2^2)^{2x-1}} = \frac
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución