1. Prove the following: \[ \begin{array}{l}\text { a) } \frac{2 \tan x-\sin 2 x}{2 \sin ^{2} x}=\tan x \\ \text { b) } \tan ^{2} x+1=\sec ^{2} x \\ \text { c) } \tan x+\frac{\cos x}{1+\sin x}=\sec x \\ \text { d) } \frac{\tan x \sin x}{\tan x+\sin x}=\frac{\tan x-\sin x}{\operatorname{can} x \sin x} \\ \text { e) } \frac{\tan x+\sec x}{\sec x\left(1+\frac{\tan x}{\operatorname{sen} x}\right)}=1 . \quad(20 \text { marks) }\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
First, let's delve into a little historical tidbit: the trigonometric functions we use today were heavily influenced by ancient civilizations, especially the Greeks and Indians. The word "sine" traces back to the Arabic word "jiba," which itself derived from the Sanskrit term "jya," meaning "half-chord." This fascinating evolution underscores how mathematics transcends cultures and centuries! Now, onto the real-world applications! Trigonometric identities are more than just equations; they are essential tools in fields ranging from physics to engineering. For instance, understanding how to manipulate these identities can help in calculating forces and analyzing wave patterns, which are fundamentally crucial in designing structures or even creating stunning effects in animation! So next time you see a bridge or a breathtaking movie, remember that trigonometric identities played a little part in making it possible!
