Pregunta
upstudy study bank question image url

If 6600 dollars is invested at an interest rate of 5 percent per year, find the value of the investment at the end of 5 years for the following compounding methods. Round value to the nearest cent. (a) Annual: \( \$ \) (b) Semiannual: \( \$ \) (c) Monthly. \( \$ \) (d) Daily: \( \$ \)

Ask by Bryant Cox. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At the end of 5 years: - Annual compounding: \$34,650.00 - Semiannual compounding: \$34,670.63 - Monthly compounding: \$34,688.34 - Daily compounding: \$34,691.83

Solución

To find the value of the investment at the end of 5 years for different compounding methods, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (initial investment). - \( r \) is the annual interest rate (in decimal form). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - Initial investment \( P = \$6600 \) - Annual interest rate \( r = 5\% = 0.05 \) - Time \( t = 5 \) years We will calculate the value of the investment at the end of 5 years for each compounding method: (a) Annual compounding: \[ A = 6600 \left(1 + \frac{0.05}{1}\right)^{1 \times 5} \] (b) Semiannual compounding: \[ A = 6600 \left(1 + \frac{0.05}{2}\right)^{2 \times 5} \] (c) Monthly compounding: \[ A = 6600 \left(1 + \frac{0.05}{12}\right)^{12 \times 5} \] (d) Daily compounding: \[ A = 6600 \left(1 + \frac{0.05}{365}\right)^{365 \times 5} \] Let's calculate the values for each compounding method. Calculate the value by following steps: - step0: Calculate: \(6600\left(1+\frac{0.05}{1}\right)^{1}\times 5\) - step1: Divide the terms: \(6600\left(1+\frac{1}{20}\right)^{1}\times 5\) - step2: Add the numbers: \(6600\left(\frac{21}{20}\right)^{1}\times 5\) - step3: Calculate: \(6600\times \frac{21}{20}\times 5\) - step4: Multiply the terms: \(6930\times 5\) - step5: Multiply the numbers: \(34650\) Calculate or simplify the expression \( 6600*(1+0.05/2)^2*5 \). Calculate the value by following steps: - step0: Calculate: \(6600\left(1+\frac{0.05}{2}\right)^{2}\times 5\) - step1: Divide the terms: \(6600\left(1+\frac{1}{40}\right)^{2}\times 5\) - step2: Add the numbers: \(6600\left(\frac{41}{40}\right)^{2}\times 5\) - step3: Multiply the terms: \(33000\left(\frac{41}{40}\right)^{2}\) - step4: Evaluate the power: \(33000\times \frac{1681}{1600}\) - step5: Multiply: \(\frac{277365}{8}\) Calculate or simplify the expression \( 6600*(1+0.05/12)^12*5 \). Calculate the value by following steps: - step0: Calculate: \(6600\left(1+\frac{0.05}{12}\right)^{12}\times 5\) - step1: Divide the terms: \(6600\left(1+\frac{1}{240}\right)^{12}\times 5\) - step2: Add the numbers: \(6600\left(\frac{241}{240}\right)^{12}\times 5\) - step3: Multiply the terms: \(33000\left(\frac{241}{240}\right)^{12}\) - step4: Simplify: \(33000\times \frac{241^{12}}{240^{12}}\) - step5: Rewrite the expression: \(120\times 275\times \frac{241^{12}}{240^{12}}\) - step6: Rewrite the expression: \(120\times 275\times \frac{241^{12}}{120^{12}\times 2^{12}}\) - step7: Reduce the numbers: \(275\times \frac{241^{12}}{120^{11}\times 2^{12}}\) - step8: Rewrite the expression: \(25\times 11\times \frac{241^{12}}{120^{11}\times 2^{12}}\) - step9: Rewrite the expression: \(25\times 11\times \frac{241^{12}}{5^{11}\times 24^{11}\times 2^{12}}\) - step10: Rewrite the expression: \(5^{2}\times 11\times \frac{241^{12}}{5^{11}\times 24^{11}\times 2^{12}}\) - step11: Reduce the numbers: \(11\times \frac{241^{12}}{5^{9}\times 24^{11}\times 2^{12}}\) - step12: Multiply the fractions: \(\frac{11\times 241^{12}}{4096\times 5^{9}\times 24^{11}}\) Calculate or simplify the expression \( 6600*(1+0.05/365)^365*5 \). Calculate the value by following steps: - step0: Calculate: \(6600\left(1+\frac{0.05}{365}\right)^{365}\times 5\) - step1: Divide the terms: \(6600\left(1+\frac{1}{7300}\right)^{365}\times 5\) - step2: Add the numbers: \(6600\left(\frac{7301}{7300}\right)^{365}\times 5\) - step3: Multiply the terms: \(33000\left(\frac{7301}{7300}\right)^{365}\) - step4: Simplify: \(33000\times \frac{7301^{365}}{7300^{365}}\) - step5: Rewrite the expression: \(1000\times 33\times \frac{7301^{365}}{7300^{365}}\) - step6: Rewrite the expression: \(1000\times 33\times \frac{7301^{365}}{100^{365}\times 73^{365}}\) - step7: Rewrite the expression: \(10^{3}\times 33\times \frac{7301^{365}}{10^{730}\times 73^{365}}\) - step8: Reduce the numbers: \(33\times \frac{7301^{365}}{10^{727}\times 73^{365}}\) - step9: Multiply the fractions: \(\frac{33\times 7301^{365}}{10^{727}\times 73^{365}}\) The values of the investment at the end of 5 years for different compounding methods are: (a) Annual compounding: $34,650 (b) Semiannual compounding: $34,670.63 (c) Monthly compounding: $34,688.34 (d) Daily compounding: $34,691.83 Rounded to the nearest cent, the values are: (a) Annual compounding: $34,650 (b) Semiannual compounding: $34,670.63 (c) Monthly compounding: $34,688.34 (d) Daily compounding: $34,691.83

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the future value of an investment under different compounding methods, we can use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the future value of the investment/loan, including interest - \( P \) is the principal investment amount (the initial deposit or loan amount) - \( r \) is the annual interest rate (decimal) - \( n \) is the number of times that interest is compounded per year - \( t \) is the number of years For this problem: - \( P = 6600 \) - \( r = 0.05 \) - \( t = 5 \) Let's calculate the amounts: (a) **Annual Compounding (\( n = 1 \)):** \[ A = 6600 \left(1 + \frac{0.05}{1}\right)^{1 \times 5} = 6600 \left(1.05\right)^{5} \approx 6600 \times 1.27628 \approx 8425.48 \] (b) **Semiannual Compounding (\( n = 2 \)):** \[ A = 6600 \left(1 + \frac{0.05}{2}\right)^{2 \times 5} = 6600 \left(1 + 0.025\right)^{10} = 6600 \left(1.025\right)^{10} \approx 6600 \times 1.28008 \approx 8449.53 \] (c) **Monthly Compounding (\( n = 12 \)):** \[ A = 6600 \left(1 + \frac{0.05}{12}\right)^{12 \times 5} = 6600 \left(1 + 0.0041667\right)^{60} = 6600 \left(1.0041667\right)^{60} \approx 6600 \times 1.28368 \approx 8479.38 \] (d) **Daily Compounding (\( n = 365 \)):** \[ A = 6600 \left(1 + \frac{0.05}{365}\right)^{365 \times 5} = 6600 \left(1 + 0.000136986\right)^{1825} \approx 6600 \left(1.28368\right) \approx 8479.38 \] Thus, the values of the investments at the end of 5 years are approximately: (a) Annual: \( \$8425.48 \) (b) Semiannual: \( \$8449.53 \) (c) Monthly: \( \$8479.38 \) (d) Daily: \( \$8479.38 \)

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad