Responder
At the end of 5 years:
- Annual compounding: \$34,650.00
- Semiannual compounding: \$34,670.63
- Monthly compounding: \$34,688.34
- Daily compounding: \$34,691.83
Solución
To find the value of the investment at the end of 5 years for different compounding methods, we can use the formula for compound interest:
\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \]
where:
- \( A \) is the amount of money accumulated after n years, including interest.
- \( P \) is the principal amount (initial investment).
- \( r \) is the annual interest rate (in decimal form).
- \( n \) is the number of times that interest is compounded per year.
- \( t \) is the time the money is invested for in years.
Given:
- Initial investment \( P = \$6600 \)
- Annual interest rate \( r = 5\% = 0.05 \)
- Time \( t = 5 \) years
We will calculate the value of the investment at the end of 5 years for each compounding method:
(a) Annual compounding:
\[ A = 6600 \left(1 + \frac{0.05}{1}\right)^{1 \times 5} \]
(b) Semiannual compounding:
\[ A = 6600 \left(1 + \frac{0.05}{2}\right)^{2 \times 5} \]
(c) Monthly compounding:
\[ A = 6600 \left(1 + \frac{0.05}{12}\right)^{12 \times 5} \]
(d) Daily compounding:
\[ A = 6600 \left(1 + \frac{0.05}{365}\right)^{365 \times 5} \]
Let's calculate the values for each compounding method.
Calculate the value by following steps:
- step0: Calculate:
\(6600\left(1+\frac{0.05}{1}\right)^{1}\times 5\)
- step1: Divide the terms:
\(6600\left(1+\frac{1}{20}\right)^{1}\times 5\)
- step2: Add the numbers:
\(6600\left(\frac{21}{20}\right)^{1}\times 5\)
- step3: Calculate:
\(6600\times \frac{21}{20}\times 5\)
- step4: Multiply the terms:
\(6930\times 5\)
- step5: Multiply the numbers:
\(34650\)
Calculate or simplify the expression \( 6600*(1+0.05/2)^2*5 \).
Calculate the value by following steps:
- step0: Calculate:
\(6600\left(1+\frac{0.05}{2}\right)^{2}\times 5\)
- step1: Divide the terms:
\(6600\left(1+\frac{1}{40}\right)^{2}\times 5\)
- step2: Add the numbers:
\(6600\left(\frac{41}{40}\right)^{2}\times 5\)
- step3: Multiply the terms:
\(33000\left(\frac{41}{40}\right)^{2}\)
- step4: Evaluate the power:
\(33000\times \frac{1681}{1600}\)
- step5: Multiply:
\(\frac{277365}{8}\)
Calculate or simplify the expression \( 6600*(1+0.05/12)^12*5 \).
Calculate the value by following steps:
- step0: Calculate:
\(6600\left(1+\frac{0.05}{12}\right)^{12}\times 5\)
- step1: Divide the terms:
\(6600\left(1+\frac{1}{240}\right)^{12}\times 5\)
- step2: Add the numbers:
\(6600\left(\frac{241}{240}\right)^{12}\times 5\)
- step3: Multiply the terms:
\(33000\left(\frac{241}{240}\right)^{12}\)
- step4: Simplify:
\(33000\times \frac{241^{12}}{240^{12}}\)
- step5: Rewrite the expression:
\(120\times 275\times \frac{241^{12}}{240^{12}}\)
- step6: Rewrite the expression:
\(120\times 275\times \frac{241^{12}}{120^{12}\times 2^{12}}\)
- step7: Reduce the numbers:
\(275\times \frac{241^{12}}{120^{11}\times 2^{12}}\)
- step8: Rewrite the expression:
\(25\times 11\times \frac{241^{12}}{120^{11}\times 2^{12}}\)
- step9: Rewrite the expression:
\(25\times 11\times \frac{241^{12}}{5^{11}\times 24^{11}\times 2^{12}}\)
- step10: Rewrite the expression:
\(5^{2}\times 11\times \frac{241^{12}}{5^{11}\times 24^{11}\times 2^{12}}\)
- step11: Reduce the numbers:
\(11\times \frac{241^{12}}{5^{9}\times 24^{11}\times 2^{12}}\)
- step12: Multiply the fractions:
\(\frac{11\times 241^{12}}{4096\times 5^{9}\times 24^{11}}\)
Calculate or simplify the expression \( 6600*(1+0.05/365)^365*5 \).
Calculate the value by following steps:
- step0: Calculate:
\(6600\left(1+\frac{0.05}{365}\right)^{365}\times 5\)
- step1: Divide the terms:
\(6600\left(1+\frac{1}{7300}\right)^{365}\times 5\)
- step2: Add the numbers:
\(6600\left(\frac{7301}{7300}\right)^{365}\times 5\)
- step3: Multiply the terms:
\(33000\left(\frac{7301}{7300}\right)^{365}\)
- step4: Simplify:
\(33000\times \frac{7301^{365}}{7300^{365}}\)
- step5: Rewrite the expression:
\(1000\times 33\times \frac{7301^{365}}{7300^{365}}\)
- step6: Rewrite the expression:
\(1000\times 33\times \frac{7301^{365}}{100^{365}\times 73^{365}}\)
- step7: Rewrite the expression:
\(10^{3}\times 33\times \frac{7301^{365}}{10^{730}\times 73^{365}}\)
- step8: Reduce the numbers:
\(33\times \frac{7301^{365}}{10^{727}\times 73^{365}}\)
- step9: Multiply the fractions:
\(\frac{33\times 7301^{365}}{10^{727}\times 73^{365}}\)
The values of the investment at the end of 5 years for different compounding methods are:
(a) Annual compounding: $34,650
(b) Semiannual compounding: $34,670.63
(c) Monthly compounding: $34,688.34
(d) Daily compounding: $34,691.83
Rounded to the nearest cent, the values are:
(a) Annual compounding: $34,650
(b) Semiannual compounding: $34,670.63
(c) Monthly compounding: $34,688.34
(d) Daily compounding: $34,691.83
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución