Pregunta
Question 6 Consider the cost function \( C(x)=5 x^{3}-\frac{4}{x^{2}} \). What is the marginal cost at the production level \( x=2 \) ? Ouestion 7
Ask by Burton Conner. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The marginal cost at \( x=2 \) is 61.
Solución
To find the marginal cost at the production level \( x=2 \) for the cost function \( C(x)=5x^{3}-\frac{4}{x^{2}} \), we need to find the derivative of the cost function with respect to \( x \) and then evaluate it at \( x=2 \).
The marginal cost is the rate of change of the cost with respect to the production level, which is given by the derivative of the cost function.
Let's find the derivative of the cost function \( C(x) \) with respect to \( x \) using the power rule for differentiation:
\[ C'(x) = \frac{d}{dx} \left(5x^{3}-\frac{4}{x^{2}}\right) \]
Using the power rule for differentiation, we have:
\[ C'(x) = 15x^{2} + \frac{8}{x^{3}} \]
Now, we need to evaluate the marginal cost at \( x=2 \) by substituting \( x=2 \) into the derivative:
\[ C'(2) = 15(2)^{2} + \frac{8}{(2)^{3}} \]
\[ C'(2) = 15(4) + \frac{8}{8} \]
\[ C'(2) = 60 + 1 \]
\[ C'(2) = 61 \]
Therefore, the marginal cost at the production level \( x=2 \) is 61.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find the marginal cost, we first need to derive the cost function \( C(x) \). The marginal cost is given by the derivative \( C'(x) \). For the function \( C(x) = 5x^3 - \frac{4}{x^2} \), we would differentiate it: \[ C'(x) = 15x^2 + \frac{8}{x^3} \] Now, substituting \( x = 2 \): \[ C'(2) = 15(2^2) + \frac{8}{2^3} = 15(4) + \frac{8}{8} = 60 + 1 = 61 \] So, the marginal cost at the production level \( x = 2 \) is \( 61 \). Now onto the next question!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium