Question Use the square roots property to solve the quadratic equation \( 9 q^{2}+48 q+64=100 \). If there are multiple answers, list them separated by a comma, e.g. 1,2 . If there is no solution, enter \( \varnothing \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve the equation \( 9 q^{2} + 48 q + 64 = 100 \), we first set the equation to zero: \[ 9 q^{2} + 48 q + 64 - 100 = 0 \] \[ 9 q^{2} + 48 q - 36 = 0 \] Next, we simplify by dividing the entire equation by 9: \[ q^{2} + \frac{48}{9} q - 4 = 0 \] \[ q^{2} + \frac{16}{3} q - 4 = 0 \] Now we can use the square root property. The quadratic formula can also be applied here, \[ q = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]: Here, \( a = 1 \), \( b = \frac{16}{3} \), and \( c = -4 \): Calculating \( b^2 - 4ac \): \[ \left(\frac{16}{3}\right)^2 - 4 \cdot 1 \cdot (-4) = \frac{256}{9} + 16 = \frac{256}{9} + \frac{144}{9} = \frac{400}{9} \] Now applying the quadratic formula: \[ q = \frac{-\frac{16}{3} \pm \sqrt{\frac{400}{9}}}{2} \] \[ q = \frac{-\frac{16}{3} \pm \frac{20}{3}}{2} \] Calculating the two possible values: 1. \[ q = \frac{-\frac{16}{3} + \frac{20}{3}}{2} = \frac{\frac{4}{3}}{2} = \frac{2}{3} \] 2. \[ q = \frac{-\frac{16}{3} - \frac{20}{3}}{2} = \frac{-\frac{36}{3}}{2} = \frac{-12}{2} = -6 \] So the solutions are: \( \frac{2}{3}, -6 \).
