Pregunta
upstudy study bank question image url

The probability of snow tomorrow is \( \frac{3}{5} \). If it snows tomorrow, the probability that John will practice his guitar is \( \frac{7}{10} \). If it does not snow tomorrow, the probability that John will practice his guitar is \( \frac{1}{2} \). What is the probability that John will practice his guitar tomorrow? \( P(J o h n \) will practice) \( =\square \) (Type an integer or a simplified fraction.)

Ask by Griffin Bush. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that John will practice his guitar tomorrow is \( \frac{31}{50} \).

Solución

We are given the following probabilities: 1. The probability it snows tomorrow is 3/5. 2. If it snows tomorrow, the probability John will practice his guitar is 7/10. 3. If it does not snow tomorrow, the probability John will practice his guitar is 1/2. To find the overall probability that John practices his guitar, we use the Law of Total Probability. This law states that the total probability of an event is the sum of the probabilities of that event occurring under each condition weighted by the probability of each condition. Let:  P(S) = probability it snows = 3/5,  P(¬S) = probability it does not snow = 1 - 3/5 = 2/5,  P(J|S) = probability John practices given it snows = 7/10,  P(J|¬S) = probability John practices given no snow = 1/2. The overall probability that John practices his guitar is:  P(J) = P(J|S) × P(S) + P(J|¬S) × P(¬S). Now, substitute the values:  P(J) = (7/10 × 3/5) + (1/2 × 2/5). Calculate each part separately:  (7/10 × 3/5) = 21/50,  (1/2 × 2/5) = 2/10 = 1/5 = 10/50. Add them together:  P(J) = 21/50 + 10/50 = 31/50. Thus, the probability that John will practice his guitar tomorrow is 31/50.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that John will practice his guitar tomorrow, we can use the law of total probability. Let \( S \) be the event that it snows tomorrow, and \( P \) be the event that John practices his guitar. We know: - \( P(S) = \frac{3}{5} \) (Probability of snow) - \( P(P | S) = \frac{7}{10} \) (Probability John practices if it snows) - \( P(\neg S) = 1 - P(S) = \frac{2}{5} \) (Probability it does not snow) - \( P(P | \neg S) = \frac{1}{2} \) (Probability John practices if it does not snow) Now we can calculate the total probability that John practices his guitar: \[ P(P) = P(P | S) \cdot P(S) + P(P | \neg S) \cdot P(\neg S) \] Substituting in the values: \[ P(P) = \left(\frac{7}{10} \cdot \frac{3}{5}\right) + \left(\frac{1}{2} \cdot \frac{2}{5}\right) \] Calculating each term: 1. \( \frac{7}{10} \cdot \frac{3}{5} = \frac{21}{50} \) 2. \( \frac{1}{2} \cdot \frac{2}{5} = \frac{1}{5} = \frac{10}{50} \) Now, adding these probabilities together: \[ P(P) = \frac{21}{50} + \frac{10}{50} = \frac{31}{50} \] Thus, the probability that John will practice his guitar tomorrow is \( \frac{31}{50} \). So, \( P(J o h n \) will practice) \( = \frac{31}{50} \)

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad