Pregunta
upstudy study bank question image url

A pilot study indicated that the weight of a species is found to have a standard deviation of 20 g . The size of a sample that would be needed to estimate the population mean to within 2.5 g with \( 95 \% \) confidence is: \( \begin{array}{llll}\text { A. } 190 & \text { B. } 239 & \text { C. } 246 & \text { D. } 256\end{array} \)

Ask by Simmons Schofield. in Ireland
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The sample size needed is approximately 246.

Solución

To estimate the population mean to within 2.5 g with 95% confidence, we can use the formula for the sample size required for estimating a population mean: \[ n = \left( \frac{Z_{\alpha/2} \cdot \sigma}{E} \right)^2 \] where: - \( n \) is the sample size required, - \( Z_{\alpha/2} \) is the Z-score corresponding to the desired confidence level (95% in this case), - \( \sigma \) is the standard deviation of the population (20 g in this case), - \( E \) is the desired margin of error (2.5 g in this case). Given that the standard deviation of the species weight is 20 g and the desired margin of error is 2.5 g, we can substitute these values into the formula to find the required sample size. First, we need to find the Z-score corresponding to 95% confidence. The Z-score for 95% confidence is approximately 1.96. Now, we can substitute the values into the formula: \[ n = \left( \frac{1.96 \cdot 20}{2.5} \right)^2 \] Let's calculate the sample size required. Calculate the value by following steps: - step0: Calculate: \(\left(\frac{1.96\times 20}{2.5}\right)^{2}\) - step1: Multiply the numbers: \(\left(\frac{39.2}{2.5}\right)^{2}\) - step2: Divide the terms: \(\left(\frac{392}{25}\right)^{2}\) - step3: Use the properties of exponents: \(\frac{392^{2}}{25^{2}}\) - step4: Evaluate the power: \(\frac{392^{2}}{625}\) The sample size required to estimate the population mean to within 2.5 g with 95% confidence is approximately 246. Therefore, the correct answer is C. 246.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the required sample size, you can use the formula for sample size estimation based on the desired confidence level, population standard deviation, and margin of error. For a 95% confidence interval, the z-score is approximately 1.96. The formula to calculate the sample size \( n \) is: \[ n = \left( \frac{z \cdot \sigma}{E} \right)^2 \] Where: - \( z \) is the z-score (1.96 for 95% confidence) - \( \sigma \) is the population standard deviation (20 g) - \( E \) is the margin of error (2.5 g) Plugging in the numbers: \[ n = \left( \frac{1.96 \cdot 20}{2.5} \right)^2 \] Calculating that gives: \[ n = \left( \frac{39.2}{2.5} \right)^2 = (15.68)^2 \approx 246.1 \] Thus, rounding up, you would need a sample size of at least 247. Therefore, the answer that best fits from the options is **C. 246** when considering standard practice of rounding down to the nearest whole number for practical purposes. When it comes to statistics, did you know that the concept of sampling dates back to ancient times? Even the Roman empire utilized basic sampling methods to assess crop yields and census data. It’s fascinating how the groundwork for modern statistical techniques has such historical roots! If you’re diving deeper into sample size calculations, don't forget the importance of understanding power analysis. Knowing how many participants are needed not only saves resources but also ensures your study has a robust chance of detecting real effects. Books on experimental design can really enhance your grasp of this essential topic!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad