Pregunta
upstudy study bank question image url

QUESTION 4 Consider: \( g(x)=\frac{a}{x+p}+q \) The following information of \( g \) is given: - Domain: \( x \in \mathrm{R} ; x \neq-2 \) - \( x \)-intercept at \( \mathrm{K}(1 ; 0) \) - \( y \)-intercept at \( \mathrm{N}\left(0 ;-\frac{1}{2}\right) \) 4.1 Show that the equation of \( g \) is given by: \( g(x)=\frac{-3}{x+2}+1 \) 4.2 Write down the range of \( g \). 4.3 Determine the equation of \( h \), the axis of symmetry of \( g \), in the form \( y=m x+c \), where \( m>0 \). 4.4 Write down the coordinates of \( K^{\prime} \), the image of \( K \) reflected over \( h \). (2) [12]

Ask by Peterson Brooks. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

4.1 \( g(x) = \frac{-3}{x+2} + 1 \) 4.2 Range: All real numbers except \( y = 1 \) 4.3 Axis of symmetry: \( y = 0 \) 4.4 Coordinates of \( K' \): \( (-5, 0) \)

Solución

To solve the problem step by step, we will analyze the function \( g(x) = \frac{a}{x+p} + q \) using the given conditions. ### 4.1 Show that the equation of \( g \) is given by: \( g(x) = \frac{-3}{x+2} + 1 \) **Step 1: Identify the parameters using the intercepts.** 1. **\( x \)-intercept at \( K(1, 0) \)**: \[ g(1) = 0 \implies \frac{a}{1+p} + q = 0 \] 2. **\( y \)-intercept at \( N(0, -\frac{1}{2}) \)**: \[ g(0) = -\frac{1}{2} \implies \frac{a}{0+p} + q = -\frac{1}{2} \] **Step 2: Substitute \( q \) from the first equation into the second.** From the first equation: \[ q = -\frac{a}{1+p} \] Substituting into the second equation: \[ \frac{a}{p} - \frac{a}{1+p} = -\frac{1}{2} \] **Step 3: Solve for \( a \) and \( p \).** Multiply through by \( p(1+p) \): \[ a(1+p) - a p = -\frac{1}{2} p(1+p) \] \[ a = -\frac{1}{2} \frac{p(1+p)}{1} \] **Step 4: Use the domain condition.** The domain condition \( x \neq -2 \) implies \( p = 2 \). Substituting \( p = 2 \): \[ a = -\frac{1}{2} \cdot 2(1+2) = -\frac{1}{2} \cdot 6 = -3 \] **Step 5: Substitute \( a \) and \( p \) back into \( g(x) \).** Now we have: \[ g(x) = \frac{-3}{x+2} + q \] To find \( q \): Using \( q = -\frac{a}{1+p} = -\frac{-3}{1+2} = 1 \). Thus, the equation of \( g \) is: \[ g(x) = \frac{-3}{x+2} + 1 \] ### 4.2 Write down the range of \( g \). The function \( g(x) = \frac{-3}{x+2} + 1 \) has a vertical asymptote at \( x = -2 \) and approaches \( y = 1 \) as \( x \to \infty \) or \( x \to -\infty \). The function can take all values except \( y = 1 \). **Range**: \( y \in \mathbb{R}, y \neq 1 \). ### 4.3 Determine the equation of \( h \), the axis of symmetry of \( g \). The axis of symmetry for a rational function of the form \( g(x) = \frac{a}{x+p} + q \) is a vertical line at \( x = -p \). Here, \( p = 2 \), so the axis of symmetry is: \[ x = -2 \] To express it in the form \( y = mx + c \), we can write: \[ y = 0 \cdot x + 0 \quad \text{(since it is a vertical line)} \] ### 4.4 Write down the coordinates of \( K' \), the image of \( K \) reflected over \( h \). **Step 1: Find the coordinates of \( K(1, 0) \).** **Step 2: Reflect over the line \( x = -2 \).** The distance from \( K(1, 0) \) to the line \( x = -2 \) is: \[ 1 - (-2) = 3 \] Thus, the reflected point \( K' \) will be: \[ -2 - 3 = -5 \] So, the coordinates of \( K' \) are: \[ K'(-5, 0) \] ### Summary of Answers: - **4.1**: \( g(x) = \frac{-3}{x+2} + 1 \) - **4.2**: Range: \( y \in \mathbb{R}, y \neq 1 \) - **4.3**: Axis of symmetry: \( y = 0 \cdot x + 0 \) - **4.4**: Coordinates of \( K' \): \( K'(-5, 0) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation of \( g(x) \), we start with the intercepts provided. The x-intercept \( K(1; 0) \) gives us the equation \( 0 = \frac{a}{1+p} + q \). With the y-intercept \( N(0; -\frac{1}{2}) \), we have \( -\frac{1}{2} = \frac{a}{0+p} + q \). By substituting \( q = -\frac{1}{2} \) into the first equation and simplifying using the domain restriction, you can ultimately derive that \( g(x) = \frac{-3}{x+2} + 1 \) holds true. The range of \( g \) can be identified by analyzing the behavior of the function. Since there is a vertical asymptote at \( x = -2 \) and as \( x \) approaches negative or positive infinity, \( g(x) \) approaches 1 but never reaches it. Thus, the range of \( g \) is all real numbers except \( 1 \), or in interval notation, \( (-\infty, 1) \cup (1, \infty) \). Now, onto the axis of symmetry! The line of symmetry \( h \) for rational functions like this one, particularly given its shape and critical points, often travels through the midpoint of the maximum and minimum values of the range. For \( g \), we find that symmetry occurs around \( y = 1 \), giving us the equation \( y = 1 \). To find the coordinates of \( K' \), the reflection of \( K \) over the symmetry line \( h \) (which is the line \( y = 1 \)), we compute the vertical distance between \( K(1, 0) \) and the line \( y = 1 \). The point \( K' \) will then be at \( (1, 2) \) since the distance below the line \( y = 1 \) needs to match the distance above it. Thus, the coordinates of \( K' \) are \( (1, 2) \).

preguntas relacionadas

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad