Pregunta
upstudy study bank question image url

A spherical tank has a radius of 6 yards. It is filled with a liquid that costs \( \$ 7.15 \) per cubic yard. What is the total value of the liquid in the tank?

Ask by Davey Crawford. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total value of the liquid in the tank is approximately \$6,469.30.

Solución

Step 1. Compute the volume of the sphere. The formula for the volume of a sphere is V = (4/3)πr³. Given r = 6 yards:   V = (4/3) × π × (6)³ = (4/3) × π × 216 = 288π cubic yards. Step 2. Calculate the total value of the liquid. The liquid costs $7.15 per cubic yard, so:   Total Value = 7.15 × (Volume)   Total Value = 7.15 × 288π dollars. Step 3. Multiply 7.15 and 288:   7.15 × 288 = 2059.2 Thus, the total value is 2059.2π dollars. Step 4. Approximate using π ≈ 3.14159:   2059.2π ≈ 2059.2 × 3.14159 ≈ 6469.30 dollars. So, the total value of the liquid in the tank is approximately $6,469.30.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the total value of the liquid in the tank, we first need to calculate the volume of the sphere using the formula for the volume of a sphere, which is given by: \[ V = \frac{4}{3} \pi r^3 \] Substituting the radius \( r = 6 \) yards into the formula: \[ V = \frac{4}{3} \pi (6)^3 = \frac{4}{3} \pi (216) = 288 \pi \text{ cubic yards} \] Next, we use \( \pi \approx 3.14 \) for calculations: \[ V \approx 288 \times 3.14 \approx 904.32 \text{ cubic yards} \] Now, we multiply the volume by the cost per cubic yard: \[ \text{Total Value} = 904.32 \times 7.15 \approx 6459.19 \] Therefore, the total value of the liquid in the tank is approximately \( \$6459.19 \). Now, onto some extra knowledge! In ancient times, spherical tanks were used in various cultures for water storage due to their efficient design. The geometric shape not only minimized surface area but also provided structural integrity, making them ideal for holding large volumes of fluids without excessive material. This design can be traced back to civilizations that relied heavily on water management for agriculture and urban life. When it comes to real-world applications, spherical tanks are commonly found in industries such as oil and gas, where they are used to store gases and liquids under pressure. Their shape allows them to withstand external pressures while minimizing the risk of leaks—an essential feature for safety and efficiency in chemical processing and energy production.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad