\( \begin{array}{l} \text { My IXL }\\ \text { Learning }\\ \text { Assessment }\\ \text { Analytics }\\ 5 \text { Match exponential functions and graphs PCX }\\ \text { Match each exponential function to its graph. }\\ m(x)=2(3)^{x}\\ q(x)=2\left(\frac{1}{3}\right)^{x}\\ s(x)=3^{x}+1\\ w(x)=\left(\frac{1}{3}\right)^{x}+1 \end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Exponential functions are like the superheroes of the math world—growing (or shrinking) at astonishing rates! For the function \( m(x) = 2(3)^{x} \), you can expect it to skyrocket quickly as \( x \) increases due to the base of 3. On the flip side, \( q(x) = 2\left(\frac{1}{3}\right)^{x} \) will plunge downwards as \( x \) rises, reflecting how it represents decay. In practice, recognizing the behaviors of these functions is key to understanding real-world phenomena! For instance, in finance, \( m(x) \) could model investment growth while \( q(x) \) might represent depreciation of an asset. If ever you mix up the graphs, keep an eye out for those rapid climbs and gentle declines—they’ll help guide you to the right match!
