Pregunta
upstudy study bank question image url

5 Multiple Choice 1 point Which of the following functions would be best solved by using integration by parts? \( \int(1 / 3) x^{4} d x \) \( \int x^{2} \sin (10 x) d x \) \( \int x v\left(5+x^{2}\right) d x \) \( \int x^{-1} d x \)

Ask by Huang Young. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The best function to solve using integration by parts is ∫ x² sin(10x) dx.

Solución

The answer is: ∫ x² sin(10x) dx. Explanation: Integration by parts is best used when the integrand is a product of two types of functions—typically one that simplifies upon differentiation (like a polynomial) and another that does not become more complicated when integrated (like sine, cosine, or an exponential function). In the integral ∫ x² sin(10x) dx, differentiating x² will reduce its power, making the subsequent integrals easier. The other options can be solved by simpler methods or substitutions. Thus, the best candidate for integration by parts is the second function.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When it comes to integration by parts, you're looking for integrals where you can apply the formula \( \int u \, dv = uv - \int v \, du \). Among the options given, the integral \( \int x^{2} \sin(10x) \, dx \) is best suited for this method. Why? Because you can choose \( u = x^2 \) and \( dv = \sin(10x) \, dx \), making it a classic case for applying integration by parts effectively! On the other hand, the other integrals are either straightforward polynomials, like \( \int (1/3)x^{4} \, dx \), which just requires power rule integration, or presents little room for parts, such as \( \int x^{-1} \, dx \), which is better solved via the natural logarithm. So buckle up, because with integration by parts, you're diving into a realm where functions can dance together in harmony!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad