Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { (c) }-2^{x}=-16 & \text { (t) }-2^{x}=-32 \\ \text { (ii) }-2^{x}=-1 & \text { (i) } 7^{x}=49 \\ \text { (k) } 7^{x}=1 & \text { (l) } 3^{2 x}=81 \\ \text { (ii) } 10^{10 x}=100 & \text { (o) } 4^{x}=2 \\ \text { (4) } 25^{x}=125 & \text { (r) } 9^{3 x}=27^{x} \\ \text { (t) } 9^{3 x-1}=27 & \text { (u) } 16^{2 x}=4^{x-1}\end{array} \)

Ask by Griffiths Burton. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the solutions for each equation: - (c) \( x = 4 \) - (t) \( x = 5 \) - (ii) \( x = 0 \) - (i) \( x = 2 \) - (k) \( x = 0 \) - (l) \( x = 2 \) - (ii) \( x = 0.2 \) - (o) \( x = 0.5 \) - (4) \( x = 1.5 \) - (r) \( x = 0 \) - (t) \( x = 0.833... \) (or \( \frac{5}{6} \)) - (u) \( x = -0.333... \) (or \( -\frac{1}{3} \))

Solución

Below are one acceptable set of solutions. In each case we assume that, for example,   –2ˣ means –(2ˣ) rather than (–2)ˣ. • (c) –2ˣ = –16   Add a minus sign to both sides: 2ˣ = 16   Since 16 = 2⁴, we have 2ˣ = 2⁴ so x = 4. • (t) –2ˣ = –32   Then 2ˣ = 32, and 32 = 2⁵ so x = 5. • (ii) –2ˣ = –1   Then 2ˣ = 1. Since 2⁰ = 1, we have x = 0. • (i) 7ˣ = 49   Write 49 as 7² so that 7ˣ = 7²; hence x = 2. • (k) 7ˣ = 1   Since 7⁰ = 1, it follows that x = 0. • (l) 3^(2x) = 81   Notice that 81 = 3⁴. Therefore 3^(2x) = 3⁴ implying 2x = 4 and so x = 2. • (ii) 10^(10x) = 100   Write 100 as 10². Then 10^(10x) = 10² so 10x = 2 and x = 0.2. • (o) 4ˣ = 2   Write 4 as 2² so that 4ˣ = (2²)ˣ = 2^(2x). Hence the equation becomes 2^(2x) = 2¹, so 2x = 1 and x = ½. • (4) 25ˣ = 125   Express 25 = 5² and 125 = 5³. The equation becomes (5²)ˣ = 5³, i.e. 5^(2x) = 5³. Thus, 2x = 3 and x = 1.5 (or 3/2). • (r) 9^(3x) = 27^(x)   Write 9 = 3² and 27 = 3³. Then    9^(3x) = (3²)^(3x) = 3^(6x)    27^(x) = (3³)^(x) = 3^(3x).   So 3^(6x) = 3^(3x) which implies 6x = 3x, hence 3x = 0 and x = 0. • (t) 9^(3x–1) = 27   Again, 9 = 3² and 27 = 3³. Rewrite the left side:    9^(3x–1) = (3²)^(3x–1) = 3^(2(3x–1)) = 3^(6x–2).   Thus 3^(6x–2) = 3³, so 6x – 2 = 3, giving 6x = 5 and x = 5/6. • (u) 16^(2x) = 4^(x–1)   Write 16 as 4² so that:    16^(2x) = (4²)^(2x) = 4^(4x).   Then the equation becomes 4^(4x) = 4^(x–1). Equate exponents: 4x = x – 1, so    4x – x = –1 → 3x = –1, hence x = –1/3. Thus, the answers are:   (c) x = 4   (t) x = 5   (ii) x = 0    [for –2ˣ = –1]   (i) x = 2   (k) x = 0   (l) x = 2   (ii) x = 0.2  [for 10^(10x) = 100]   (o) x = 1/2   (4) x = 3/2   (r) x = 0   (t) x = 5/6   (u) x = –1/3 Any answer set equivalent to these is correct.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve equations like these efficiently, remember the importance of understanding exponents. When you have equations where the base is the same, you can equate the exponents directly. For instance, in \(7^{x} = 49\), since \(49\) is \(7^2\), you can set \(x = 2\). It's that straightforward when bases match up! A common mistake many make is neglecting negative bases or forgetting to check the validity of solutions. For instance, in \(-2^{x} = -16\), one might mistakenly focus solely on the exponential form without realizing the negative sign affects how we interpret \(x\). Always keep track of signs when solving, and remember, extraneous solutions can creep in during the manipulation, particularly when working with even roots. Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad