Pregunta
upstudy study bank question image url

The Acme Company manufactures widgets. The distribution of widget weights is bell-shaped. The widget weights have a mean of 53 ounces and a standard deviation of 11 ounces. Use the Empirical Rule. Suggestion: sketch the distribution in order to answer these questions. a) \( 95 \% \) of the widget weights lie between b) What percentage of the widget weights lie between 42 and 75 ounces? c) What percentage of the widget weights lie below 86 ?

Ask by Bryant Campbell. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) 95% of the widget weights lie between 31 ounces and 75 ounces. b) 84% of the widget weights lie between 42 and 75 ounces. c) 99.7% of the widget weights lie below 86 ounces.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To address these questions using the Empirical Rule (also known as the 68-95-99.7 rule), we first need to understand what this rule states. The Empirical Rule suggests that for a bell-shaped distribution, approximately \(68\% \) of the data falls within one standard deviation from the mean, about \( 95\% \) falls within two standard deviations, and \( 99.7\% \) falls within three standard deviations. a) For the widget weights, the mean is 53 ounces and the standard deviation is 11 ounces. Thus, \(95\%\) of the widget weights lie between \(53 - 2(11) = 31\) ounces and \(53 + 2(11) = 75\) ounces. b) The weights between 42 and 75 ounces include all widget weights below 75 ounces, which lie within two standard deviations above the mean. Thus, since weights below 31 ounces lie below two standard deviations, the percentage of widgets between 42 and 75 ounces is about \(95\%\), with a tiny portion of those below 42 ounces counted in the remaining \(5\%\). c) Now, to find the percentage of widget weights that lie below 86 ounces, we calculate how many standard deviations 86 ounces is above the mean. The value \(86\) is \( (86 - 53) / 11 \approx 3\) standard deviations above the mean. Based on the Empirical Rule, \(99.7\% \) of the data lies within three standard deviations. Therefore, \(100\% - 0.3\% = 99.7\%\) of widget weights lie below 86 ounces.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad