Amir stands on a balcony and throws a ball to his dog, who is at ground level. The ball's height (in meters above the ground), \( x \) seconds after Amir threw it, is modeled by \( h(x)=-(x+1)(x-7) \) What is the maximum height that the ball will reach? meters
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the maximum height of the ball, we first need to rewrite the quadratic equation in vertex form. The provided equation is: \[ h(x) = -(x + 1)(x - 7) \] Expanding this, we get: \[ h(x) = -x^2 + 6x - 7 \] The maximum height occurs at the vertex of the parabola. For a quadratic in the form \( ax^2 + bx + c \), the vertex's x-coordinate can be found using \( -\frac{b}{2a} \). Here, \( a = -1 \) and \( b = 6 \): \[ x = -\frac{6}{2(-1)} = 3 \] Now, plug \( x = 3 \) back into the original height function to find the maximum height: \[ h(3) = - (3 + 1)(3 - 7) = - (4)(-4) = 16 \] So, the maximum height that the ball will reach is **16 meters**.
