Pregunta
upstudy study bank question image url

4. (1.5 points) Which of the following describes the equilibrium point of the following system of differential equations: \[ \frac{d Y}{d t}=\left(\begin{array}{cc}10 & 3 \\ 2 & 9\end{array}\right) Y \text {. } \] (a) center (b) sink (c) source (d) saddle (e) spiral sink (f) spiral source

Ask by Lane Todd. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equilibrium point is a source.

Solución

To determine the type of equilibrium point, we first find the eigenvalues of the matrix A:  A = [10 3]    [2 9] The eigenvalues λ are found by solving the characteristic equation:  det(A - λI) = 0 So,  |(10 - λ) 3|  |2    (9 - λ)| = (10 - λ)(9 - λ) - (2)(3) = 0 Expanding:  (10 - λ)(9 - λ) = 90 - 10λ - 9λ + λ² = λ² - 19λ + 90 Then subtract 6 (because 2*3=6):  λ² - 19λ + 90 - 6 = λ² - 19λ + 84 = 0 Now solve the quadratic equation:  λ² - 19λ + 84 = 0 The discriminant is:  D = (−19)² - 4(1)(84) = 361 - 336 = 25 So, the eigenvalues are:  λ = [19 ± √25] / 2 = [19 ± 5] / 2 This gives:  λ₁ = (19 + 5)/2 = 12  and  λ₂ = (19 - 5)/2 = 7 Since both eigenvalues are positive and real, the equilibrium point at the origin is unstable (trajectories move away from the equilibrium as time increases). There is no oscillatory (complex) behavior, so it is not a spiral. Thus, the equilibrium point is:  Answer: (c) source.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equilibrium point of the system of differential equations, we need to analyze the matrix involved. The given matrix is \(\begin{pmatrix} 10 & 3 \\ 2 & 9 \end{pmatrix}\). The first step is to calculate the eigenvalues, which will help determine the stability of the equilibrium point. The characteristic equation is found by solving the determinant \(\text{det}(A - \lambda I) = 0\), where \(A\) is the matrix and \(\lambda\) represents the eigenvalues. This results in a positive real eigenvalue, leading to an understanding that the system behaves as a source due to the properties of the evolution. Thus, the equilibrium point acts like a source. So, the answer is: (c) source. Now, let's dive a little deeper! In systems of differential equations, the nature of equilibrium points can drastically affect the behavior of those systems over time. For instance, if you were to visualize the trajectories of a source, you'd see trajectories diverging outward, representing instability in that equilibrium. Understanding the stability of these points is not just an academic exercise; it has real-world implications in fields like ecology, where populations can grow rapidly under certain conditions, leading to unsustainable scenarios!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad