b) \( 38^{\circ} 20^{\circ} 53^{\prime \prime}-12^{\circ} 51^{\prime} \) c) \( 52^{\circ} 20^{\prime} 53^{\prime \prime}-15^{\circ} 30^{\prime} 12^{\prime \prime} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
When you subtract angles in degrees, minutes, and seconds, it’s essential to keep track of your borrowing! If the seconds in the first angle are less than the seconds in the second angle, you'll need to borrow a minute (60 seconds) and convert it. Similarly, if the minutes need adjustment, you'll have to borrow a degree for that too. Remember: \( 1 \text{ degree} = 60 \text{ minutes} \) and \( 1 \text{ minute} = 60 \text{ seconds} \). To tackle the problems systematically, start from the rightmost column (seconds), and proceed to the left (minutes and degrees). Make sure to line everything up neatly, just like you would with regular subtraction. After setting up, check your final answer for accuracy, ensuring that you've properly borrowed when necessary. Happy calculating!
