Simplify \( \sqrt{32} \) \( \begin{array}{ll}\text { A) } 2 \sqrt{2} & \text { C) } 8 \sqrt{2} \\ \text { B) } 2 \sqrt{16} & \text { D) } 4 \sqrt{2}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
First, let's break down \( \sqrt{32} \). We can factor 32 as \( 16 \times 2 \), which allows us to rewrite the square root: \[ \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} = 4 \sqrt{2}. \] So the answer is clearly \( D) 4 \sqrt{2} \)! Remember, simplifying square roots can often involve breaking numbers down into their prime factors. When you see a perfect square, like 16 in this case, it’s always worth pulling it out to make the expression easier.
