Pregunta
upstudy study bank question image url

In a pure shear state of stress, where the shear stresses are \( \tau \), the coordinates of X and Y to draw the Mohr circle are: (A) \( \left.\mathrm{X} \epsilon_{x}, \tau\right), \mathrm{Y}\left(\sigma_{y}, \tau\right) \) (B) \( \mathrm{X}(\tau, 0), \mathrm{Y}(-\tau, 0) \) (C) \( \mathrm{X}(0, \tau), Y(0,-\tau) \) (D) \( \mathrm{X}(0,0), Y(\tau,-\tau) \)

Ask by Parsons Watson. in Singapore
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct coordinates for drawing the Mohr circle in a pure shear state are \( X(0, \tau) \) and \( Y(0, -\tau) \).

Solución

For a pure shear state, the normal stresses are zero while the shear stress is τ (or -τ on the opposite face). The stress tensor then has:   σₓₓ = 0, σyy = 0, τ_xy = τ In Mohr’s circle, the coordinates for a stress element are plotted as (normal stress, shear stress) = (σ, τ). The center of the circle is given by the average of the normal stresses:   σ_avg = (σₓₓ + σyy) / 2 = (0 + 0)/2 = 0 and the radius R is:   R = √[ ((σₓₓ - σyy)/2)² + τ² ] = √(0 + τ²) = τ Thus, the Mohr circle is centered at (0, 0) with radius τ. Its intersection with the shear stress axis are at:   (0, +τ) and (0, -τ) These are the coordinates used to draw the Mohr circle. Comparing with the given options, option (C) "X(0, τ), Y(0, -τ)" correctly represents the coordinates. So, the answer is (C).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

In a pure shear state of stress, the stress components can be visualized using Mohr's Circle. The correct coordinates for the points on the Mohr Circle for pure shear would be along the shear axis, where the normal stress components are equal to zero. So, you would plot the points at \( \mathrm{X}(0, \tau) \) and \( \mathrm{Y}(0, -\tau) \) for the Mohr Circle representation. This understanding is critical in fields like materials science and mechanical engineering, where Mohr's Circle helps visualize complex stress states. By using this graphical method, engineers can easily determine principal stresses, maximum shear stresses, and the orientation of the material under load—crucial for designing structures that can withstand various forces without failure!

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad