Pregunta
upstudy study bank question image url

A bank features a savings account that has an annual percentage rate of \( 3 \% \) with interest compounded monthly. Marissa deposits \( \$ 9,000 \) into the account. How much money will Marissa have in the account in 1 year? Answer \( =\$ \square \). Round answer to the nearest penny. What is the annual percentage yield (Apy for the savings account? APY \( =3.04 \) Question Help: Giin Calculator

Ask by Barrett Fernandez. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Marissa will have $9,273.74 in the account after 1 year, and the annual percentage yield (APY) is 3.04%.

Solución

To calculate the amount of money Marissa will have in the account in 1 year, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (initial deposit). - \( r \) is the annual interest rate (in decimal form). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - \( P = \$9,000 \) - \( r = 3\% = 0.03 \) - \( n = 12 \) (compounded monthly) - \( t = 1 \) year Substitute the values into the formula: \[ A = 9000 \left( 1 + \frac{0.03}{12} \right)^{12 \cdot 1} \] Now, we can calculate the amount of money Marissa will have in the account in 1 year. Calculate the value by following steps: - step0: Calculate: \(9000\left(1+\frac{0.03}{12}\right)^{12}\) - step1: Divide the terms: \(9000\left(1+\frac{1}{400}\right)^{12}\) - step2: Add the numbers: \(9000\left(\frac{401}{400}\right)^{12}\) - step3: Simplify: \(9000\times \frac{401^{12}}{400^{12}}\) - step4: Rewrite the expression: \(200\times 45\times \frac{401^{12}}{400^{12}}\) - step5: Rewrite the expression: \(200\times 45\times \frac{401^{12}}{200^{12}\times 2^{12}}\) - step6: Reduce the numbers: \(45\times \frac{401^{12}}{200^{11}\times 2^{12}}\) - step7: Rewrite the expression: \(5\times 9\times \frac{401^{12}}{200^{11}\times 2^{12}}\) - step8: Rewrite the expression: \(5\times 9\times \frac{401^{12}}{25^{11}\times 8^{11}\times 2^{12}}\) - step9: Rewrite the expression: \(5\times 9\times \frac{401^{12}}{5^{22}\times 8^{11}\times 2^{12}}\) - step10: Reduce the numbers: \(9\times \frac{401^{12}}{5^{21}\times 8^{11}\times 2^{12}}\) - step11: Multiply the fractions: \(\frac{9\times 401^{12}}{5^{21}\times 8^{15}}\) The amount of money Marissa will have in the account in 1 year is approximately $9,273.74. To find the annual percentage yield (APY), we can use the formula: \[ APY = \left( 1 + \frac{r}{n} \right)^n - 1 \] Substitute the values into the formula: \[ APY = \left( 1 + \frac{0.03}{12} \right)^{12} - 1 \] Now, we can calculate the APY. Calculate the value by following steps: - step0: Calculate: \(\left(1+\frac{0.03}{12}\right)^{12}-1\) - step1: Divide the terms: \(\left(1+\frac{1}{400}\right)^{12}-1\) - step2: Add the numbers: \(\left(\frac{401}{400}\right)^{12}-1\) - step3: Rewrite the expression: \(\frac{401^{12}}{400^{12}}-1\) - step4: Reduce fractions to a common denominator: \(\frac{401^{12}}{400^{12}}-\frac{400^{12}}{400^{12}}\) - step5: Transform the expression: \(\frac{401^{12}-400^{12}}{400^{12}}\) The annual percentage yield (APY) for the savings account is approximately 3.04%. Therefore, Marissa will have $9,273.74 in the account in 1 year, and the APY for the savings account is 3.04%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much Marissa will have in her account after one year with monthly compounding interest, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \(A\) is the amount of money accumulated after n years, including interest. - \(P\) is the principal amount (the initial deposit). - \(r\) is the annual interest rate (in decimal). - \(n\) is the number of times that interest is compounded per year. - \(t\) is the number of years the money is invested or borrowed. For Marissa's account, we have: - \(P = 9000\) - \(r = 0.03\) - \(n = 12\) (monthly compounding) - \(t = 1\) Plugging in these values: \[ A = 9000 \left(1 + \frac{0.03}{12}\right)^{12 \times 1} \] Calculating: \[ A = 9000 \left(1 + 0.0025\right)^{12} = 9000 \left(1.0025\right)^{12} \] Calculating \( \left(1.0025\right)^{12} \approx 1.0304 \): \[ A \approx 9000 \times 1.0304 \approx 9273.60 \] So, Marissa will have approximately \( \$9273.60 \) in her account in one year. To find the annual percentage yield (APY), we can use the formula: \[ APY = \left(1 + \frac{r}{n}\right)^{n} - 1 \] Using the same values: \[ APY = \left(1 + \frac{0.03}{12}\right)^{12} - 1 \] \[ APY = \left(1.0025\right)^{12} - 1 \approx 0.0304 \] Thus, expressing it as a percentage: \[ APY \approx 3.04\% \] So your answers are: Amount \( = \$9273.60 \), APY \( = 3.04\% \). The journey of savings accounts dates back to ancient Mesopotamia when temples handled deposits and loans! Fast forward to today, banks now offer sophisticated savings options, like Marissa's account, blending technology with finance for secure savings growth. You might consider setting up automatic transfers or using budgeting apps to regularly contribute to your savings. This way, you won’t forget to save! A common mistake is underestimating how much small deposits can add up over time. Save consistently, and you'll be surprised how quickly your account grows!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad