\( -\cos \theta=2 \sin ^{2} \theta \) how that the equation can be written as: \( (2 \cos \theta+1)(\cos \theta-1)=0 \) Hence, determine the general solution of \( (2 \cos \theta+1)(\cos \theta-1)=0 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To rewrite the equation \( -\cos \theta = 2 \sin^2 \theta \) using the Pythagorean identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we start with: \[ -\cos \theta = 2(1 - \cos^2 \theta) \] Distributing the 2 gives: \[ -\cos \theta = 2 - 2\cos^2 \theta \] Rearranging the equation results in: \[ 2\cos^2 \theta - \cos \theta - 2 = 0 \] This is a quadratic equation in terms of \( \cos \theta \). To factor it, we look for two numbers that multiply to \( -4 \) (the product of \( 2 \) and \( -2 \)) and add to \( -1 \). The numbers \( -2 \) and \( 1 \) work, allowing us to factor the equation as: \[ (2 \cos \theta + 1)(\cos \theta - 1) = 0 \] Now, solving for \( \theta \): 1. **From \( 2 \cos \theta + 1 = 0 \)**: \[ \cos \theta = -\frac{1}{2} \] The general solutions are: \[ \theta = \frac{2\pi}{3} + 2k\pi \quad \text{and} \quad \theta = \frac{4\pi}{3} + 2k\pi, \quad k \in \mathbb{Z} \] 2. **From \( \cos \theta - 1 = 0 \)**: \[ \cos \theta = 1 \] The general solution is: \[ \theta = 2k\pi, \quad k \in \mathbb{Z} \] Thus, the complete general solution for the original equation is: \[ \theta = \frac{2\pi}{3} + 2k\pi, \quad \theta = \frac{4\pi}{3} + 2k\pi,\quad \text{and} \quad \theta = 2k\pi, \quad k \in \mathbb{Z} \]
