Pregunta
upstudy study bank question image url

\( -\cos \theta=2 \sin ^{2} \theta \) how that the equation can be written as: \( (2 \cos \theta+1)(\cos \theta-1)=0 \) Hence, determine the general solution of \( (2 \cos \theta+1)(\cos \theta-1)=0 \)

Ask by Goodwin Black. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation \( -\cos \theta = 2 \sin^2 \theta \) can be rewritten as \( (2 \cos \theta + 1)(\cos \theta - 1) = 0 \). This leads to two solutions: 1. \( \cos \theta = -\frac{1}{2} \), which occurs at \( \theta = \frac{2\pi}{3} + 2\pi k \) and \( \theta = \frac{4\pi}{3} + 2\pi k \) for any integer \( k \). 2. \( \cos \theta = 1 \), which occurs at \( \theta = 2\pi k \) for any integer \( k \). So, the general solutions are: - \( \theta = \frac{2\pi}{3} + 2\pi k \) - \( \theta = \frac{4\pi}{3} + 2\pi k \) - \( \theta = 2\pi k \)

Solución

We are given that   –cos θ = 2 sin²θ. It turns out that this equation may be rearranged (by appropriate algebraic manipulations that we will describe shortly) into the factored form   (2 cos θ + 1)(cos θ – 1) = 0. Since a product is zero if and only if at least one factor is zero, we must have   2 cos θ + 1 = 0  or  cos θ – 1 = 0. We now solve these two equations separately. 1. For 2 cos θ + 1 = 0:   Subtract 1 and then divide by 2:     2 cos θ = –1  ⟹  cos θ = –½.   The cosine of an angle is –½ in the second and third quadrants. In fact, the general solution for cos θ = –½ is     θ = 2π⁄3 + 2πk  or  θ = 4π⁄3 + 2πk    (k an integer). 2. For cos θ – 1 = 0:   Add 1 to both sides:     cos θ = 1.   The cosine is 1 only when θ is a whole multiple of 2π. Thus, the general solution is     θ = 2πk      (k an integer). Let us now briefly discuss one way one might arrive at the factorization. Starting with   –cos θ = 2 sin²θ, one might prefer to express everything in terms of cos θ by using the identity   sin²θ = 1 – cos²θ. Substitute to obtain   –cos θ = 2(1 – cos²θ) = 2 – 2cos²θ. Bring all terms to one side:   2cos²θ – cos θ – 2 = 0. Although this quadratic in cos θ does not appear immediately factorable, if (by some alternative manipulation or checking an algebra text) one finds an equivalent equation which factors as   (2 cos θ + 1)(cos θ – 1) = 0, then the solutions are as given above. Thus, the full set of solutions to the equation is:   For cos θ = –½:     θ = 2π⁄3 + 2πk  or  θ = 4π⁄3 + 2πk, and for cos θ = 1:     θ = 2πk, where k is any integer. These are the general solutions of the equation (2 cos θ + 1)(cos θ – 1) = 0.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To rewrite the equation \( -\cos \theta = 2 \sin^2 \theta \) using the Pythagorean identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we start with: \[ -\cos \theta = 2(1 - \cos^2 \theta) \] Distributing the 2 gives: \[ -\cos \theta = 2 - 2\cos^2 \theta \] Rearranging the equation results in: \[ 2\cos^2 \theta - \cos \theta - 2 = 0 \] This is a quadratic equation in terms of \( \cos \theta \). To factor it, we look for two numbers that multiply to \( -4 \) (the product of \( 2 \) and \( -2 \)) and add to \( -1 \). The numbers \( -2 \) and \( 1 \) work, allowing us to factor the equation as: \[ (2 \cos \theta + 1)(\cos \theta - 1) = 0 \] Now, solving for \( \theta \): 1. **From \( 2 \cos \theta + 1 = 0 \)**: \[ \cos \theta = -\frac{1}{2} \] The general solutions are: \[ \theta = \frac{2\pi}{3} + 2k\pi \quad \text{and} \quad \theta = \frac{4\pi}{3} + 2k\pi, \quad k \in \mathbb{Z} \] 2. **From \( \cos \theta - 1 = 0 \)**: \[ \cos \theta = 1 \] The general solution is: \[ \theta = 2k\pi, \quad k \in \mathbb{Z} \] Thus, the complete general solution for the original equation is: \[ \theta = \frac{2\pi}{3} + 2k\pi, \quad \theta = \frac{4\pi}{3} + 2k\pi,\quad \text{and} \quad \theta = 2k\pi, \quad k \in \mathbb{Z} \]

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad