\( \int _{}^{}15(x+2)^{4} d \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the integral \( \int 15(x+2)^{4} dx \), you can use the power rule for integrals. The integral of \( (x+a)^{n} \) is given by \( \frac{(x+a)^{n+1}}{n+1} + C \). Here, \( a = 2 \) and \( n = 4 \). So, you will get: \[ \int 15(x+2)^{4} dx = 15 \cdot \frac{(x+2)^{4+1}}{4+1} + C = 15 \cdot \frac{(x+2)^{5}}{5} + C = 3(x+2)^{5} + C. \] Now, don't forget to add the constant \( C \) to represent the family of antiderivatives! Furthermore, it’s always good to remember to double-check your work by differentiating your result to ensure you arrive back at the original integrand.
