Pregunta
upstudy study bank question image url

Find the value of each of these investments at the end of the period specified below. (a) \( \$ 3500 \) invested at \( 5 \frac{2}{5} \% \) compounded annually for five years (b) \( \$ 6000 \) invested at \( 7 \% \) compounded semiannually for ten years (a) The amount in the account after five years is \( \$ \square \) (Round to the nearest cent as needed.)

Ask by Blake Bolton. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After five years, the investment of \$3500 at 5.4% compounded annually grows to \$4,553.85. Over ten years, the \$6,000 investment at 7% compounded semiannually accumulates to \$11,939.40.

Solución

We use the compound interest formula:   A = P (1 + r)ⁿ Part (a): • Principal, P = $3500. • Nominal annual rate = 5 2/5% = 5.4% = 0.054 (as a decimal). • Compounded annually for t = 5 years, so the number of periods n = 5. The formula becomes:   A = 3500 (1 + 0.054)⁵ = 3500 (1.054)⁵ Now, calculate (1.054)⁵. One way is to use logarithms or a calculator:   (1.054)⁵ ≈ 1.3011 Thus, A ≈ 3500 × 1.3011 ≈ 4553.85 So, the amount in the account after five years is $4,553.85. Part (b): • Principal, P = $6000. • Annual interest rate = 7% = 0.07. • Since the interest is compounded semiannually, the interest rate per period is 0.07/2 = 0.035. • The number of periods over 10 years is n = 2 × 10 = 20. Now, apply the formula:   A = 6000 (1 + 0.035)²⁰ = 6000 (1.035)²⁰ Again, using a calculator:   (1.035)²⁰ ≈ 1.9899 Thus, A ≈ 6000 × 1.9899 ≈ 11939.40 So, the amount in the account after ten years is $11,939.40. Rounded to the nearest cent: (a) $4,553.85 (b) $11,939.40

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To compute the values of these investments, we can use the formula for compound interest: \[ A = P (1 + r/n)^{nt} \] where: - \( A \) = the amount of money accumulated after n years, including interest. - \( P \) = principal amount (the initial amount of money). - \( r \) = annual interest rate (decimal). - \( n \) = number of times that interest is compounded per year. - \( t \) = number of years the money is invested or borrowed. Now, let's solve each investment. ### (a) For \( \$ 3500 \) invested at \( 5 \frac{2}{5} \% = 5.4\% = 0.054 \) compounded annually for five years: - \( P = 3500 \) - \( r = 0.054 \) - \( n = 1 \) (compounded annually) - \( t = 5 \) Using the formula: \[ A = 3500 \left(1 + \frac{0.054}{1}\right)^{1 \times 5} \] \[ A = 3500 \left(1 + 0.054\right)^{5} \] \[ A = 3500 \left(1.054\right)^{5} \] Calculating \( (1.054)^{5} \approx 1.295618 \): \[ A \approx 3500 \times 1.295618 \approx 4525.66 \] The amount in the account after five years is **\$4525.66**. ### (b) For \( \$ 6000 \) invested at \( 7 \% = 0.07 \) compounded semiannually for ten years: - \( P = 6000 \) - \( r = 0.07 \) - \( n = 2 \) (compounded semiannually) - \( t = 10 \) Using the formula: \[ A = 6000 \left(1 + \frac{0.07}{2}\right)^{2 \times 10} \] \[ A = 6000 \left(1 + 0.035\right)^{20} \] \[ A = 6000 \left(1.035\right)^{20} \] Calculating \( (1.035)^{20} \approx 1.806111 \): \[ A \approx 6000 \times 1.806111 \approx 10836.67 \] The amount in the account after ten years is **\$10836.67**.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad