Solve the system by the addition method. \[ \begin{array}{l}2 x+14 y=2 \\ 4 x-14 y=4\end{array} \] Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \{\}. (Type an ordered pair.) B. There are infinitely many solutions.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve the system using the addition method, we can first align the two equations as: 1. \( 2x + 14y = 2 \) 2. \( 4x - 14y = 4 \) Next, we can manipulate the first equation by multiplying it by 2 to align the coefficients of \(x\): \( 4x + 28y = 4 \) Now we have the system: 1. \( 4x + 28y = 4 \) 2. \( 4x - 14y = 4 \) Next, we can subtract the second equation from the first: \[ (4x + 28y) - (4x - 14y) = 4 - 4 \] This simplifies to: \[ 42y = 0 \] Thus, we find \(y = 0\). Now substitute \(y = 0\) back into the first equation to find \(x\): \[ 2x + 14(0) = 2 \quad \Rightarrow \quad 2x = 2 \quad \Rightarrow \quad x = 1 \] So we get the solution: \(\{(1, 0)\}\). The correct choice is A. The solution set is \{(1, 0)\}.
