Pregunta
upstudy study bank question image url

If we increased one side of a square by 5 units and decreased the other side by 1 unit, the area of the resulting rectangle would be 67 unit \( ^{2} \) greater than the area of the square. How long are the sides of the original square? Answer: \( \square \) units

Ask by Turner Harmon. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The original square has sides that are 18 units long.

Solución

Let's denote the side length of the original square as \( s \). 1. **Calculate the area of the original square:** The area \( A_s \) of the square is given by: \[ A_s = s^2 \] 2. **Determine the dimensions of the resulting rectangle:** - One side of the square is increased by 5 units, so the new length is \( s + 5 \). - The other side is decreased by 1 unit, so the new width is \( s - 1 \). 3. **Calculate the area of the resulting rectangle:** The area \( A_r \) of the rectangle is given by: \[ A_r = (s + 5)(s - 1) \] 4. **Set up the equation based on the problem statement:** According to the problem, the area of the rectangle is 67 square units greater than the area of the square: \[ A_r = A_s + 67 \] Substituting the expressions for \( A_r \) and \( A_s \): \[ (s + 5)(s - 1) = s^2 + 67 \] 5. **Expand the left side of the equation:** \[ s^2 - s + 5s - 5 = s^2 + 67 \] Simplifying this gives: \[ s^2 + 4s - 5 = s^2 + 67 \] 6. **Eliminate \( s^2 \) from both sides:** \[ 4s - 5 = 67 \] 7. **Solve for \( s \):** \[ 4s = 67 + 5 \] \[ 4s = 72 \] \[ s = \frac{72}{4} = 18 \] Thus, the length of the sides of the original square is \( \boxed{18} \) units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let the side length of the original square be \( x \) units. The area of the square is \( x^2 \). After increasing one side by 5 units and decreasing the other by 1 unit, the dimensions of the rectangle become \( (x + 5) \) and \( (x - 1) \). Therefore, the area of the rectangle can be expressed as \( (x + 5)(x - 1) \). Setting up the equation based on the problem statement, we have: \[ (x + 5)(x - 1) = x^2 + 67 \] Expanding the left side: \[ x^2 - x + 5x - 5 = x^2 + 67 \] \[ x^2 + 4x - 5 = x^2 + 67 \] Subtract \( x^2 \) from both sides: \[ 4x - 5 = 67 \] Adding 5 to both sides gives: \[ 4x = 72 \] Dividing by 4 results in: \[ x = 18 \] Thus, the length of the sides of the original square is \( 18 \) units.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad